Troubleshooting KMS HDMI output

Raspberry Pi Ltd

2023-11-13: githash: 5385809-clean

Raspberry Pi Ltd



Troubleshooting KMS HDMI output

Colophon

2020-2023 Raspberry Pi Ltd (formerly Raspberry Pi (Trading) Ltd.)

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0)
licence.

build-date: 2023-11-13
build-version: githash: 5385809-clean

Legal Disclaimer Notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM
TIME TO TIME ("RESOURCES") ARE PROVIDED BY RASPBERRY PI LTD (“RPL") "AS IS" AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO
EVENT SHALL RPL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the
RESOURCES or any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for
their selection and use of the RESOURCES and any application of the products described in them. User agrees to
indemnify and hold RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the
RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of
the RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous
environments requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or
communication systems, air traffic control, weapons systems or safety-critical applications (including life support
systems and other medical devices), in which the failure of the products could lead directly to death, personal injury or
severe physical or environmental damage (“High Risk Activities”). RPL specifically disclaims any express or implied
warranty of fitness for High Risk Activities and accepts no liability for use or inclusions of Raspberry Pi products in High
Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPL's provision of the RESOURCES does not
expand or otherwise modify RPL's Standard Terms including but not limited to the disclaimers and warranties expressed
in them.

]
Legal Disclaimer Notice 1


https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Troubleshooting KMS HDMI output

Document version history

1.0 3 Jan 2023 o Initial release
1.1 2 Oct 2023 e Update to include Raspberry Pi 5
information

Scope of document

This document applies to the following Raspberry Pi products:

Zero| W H A B [ A+ | B+ | A B B | A+ | B+ | All | Al | All | Al | All | All | All

* * * * * * * * * * * * * * * * * *
. ______________________________________________________________________________________________________________________________________________|
Document version history

N



Troubleshooting KMS HDMI output

Introduction

With the introduction of the KMS (Kernel Mode Setting) graphics driver, Raspberry Pi Ltd is moving away from legacy
firmware control of the video output system and towards a more open source graphics system. However, this has come
with its own set of challenges. This document is intended to help with any issues that might arise when moving to the
new system.

This whitepaper assumes that Raspberry Pi is running Raspberry Pi OS, and is fully up to date with the latest firmware and
kernels.

Terminology

DRM: Direct Rendering Manager, a subsystem of the Linux kernel used to communicate with graphics processing units
(GPUs). Used in partnership with FKMS and KMS.

DVI: A predecessor to HDMI, but without the audio capabilities. HDMI to DVI cables and adapters are available to connect
a Raspberry Pi device to a DVI-equipped display.

EDID: Extended Display Identification Data. A metadata format for display devices to describe their capabilities to a video
source. The EDID data structure includes the manufacturer name and serial number, product type, physical display size,
and the timings supported by the display, along with some less useful data. Some displays can have defective EDID
blocks, which can cause problems if those defects are not handled by the display system.

FKMS (vc4-fkms-v3d): Fake Kernel Mode Setting. While the firmware still controls the low-level hardware (for example,
the High-Definition Multimedia Interface (HDMI) ports, the Display Serial Interface (DSI), etc), standard Linux libraries are
used in the kernel itself. FKMS is used by default in Buster, but is now deprecated in favour of KMS in Bullseye. Bookworm
does not support Legacy or FKMS graphics stacks.

HDMI: High-Definition Multimedia Interface is a proprietary audio/video interface for transmitting uncompressed video
data and compressed or uncompressed digital audio data.

HPD: Hotplug detect. A physical wire that is asserted by a connected display device to show it is present.

KMS: Kernel Mode Setting; see https://www.kernel.org/doc/html/latest/gpu/drm-kms.html for more details. On
Raspberry Pi, ve4-kms-v3d is a driver that implements KMS, and is often referred to as "the KMS driver".

Legacy graphics stack: A graphics stack wholly implemented in the VideoCore firmware blob exposed by a Linux
framebuffer driver. Until recently, the legacy graphics stack has been used in the majority of Raspberry Pi Ltd devices; it
has now been replaced by KMS/DRM.

Terminology


https://www.kernel.org/doc/html/latest/gpu/drm-kms.html

Troubleshooting KMS HDMI output

The HDMI system and the graphics
drivers

Raspberry Pi devices use the HDMI standard, which is very common on modern LCD monitors and televisions, for video
output. Raspberry Pi 3 (including Raspberry Pi 3B+) and earlier devices have a single HDMI port, which is capable of 1920
x 1200 @60Hz output using a full-size HDMI connector. Raspberry Pi 4 and 5 have two micro HDMI ports and are capable
of 4K output on both ports. Depending on setup, the HDMI O port on Raspberry Pi 4 is capable of up to 4Kp60, but when
using two 4K output devices you are limited to p30 on both devices. Raspberry Pi 5 is capable of 4Kp60 on both ports
simultaneously.

The graphics software stack, irrespective of version, is responsible for interrogating attached HDMI devices for their
properties and setting up the HDMI system appropriately. Legacy and FKMS stacks both use the firmware in the
VideoCore graphics processor to check for HDMI presence and properties. By contrast, KMS uses an entirely open source,
ARM-side implementation. This means the code bases for the two systems are entirely different, and in some
circumstances this can result in different behaviour between the two approaches.

HDMI and DVI devices identify themselves to the source device using a piece of metadata called an EDID block. This is
read by the source device from the display device via an 12C connection, and it is entirely transparent to the end user as it
is done by the graphics stack. The EDID block contains a great deal of information, but it is primarily used to specify which
resolutions the display supports, so Raspberry Pi can be set up to output an appropriate resolution.

How HDMI is dealt with during booting

When first powered on, Raspberry Pi goes through several processing stages, known as boot stages:
1. The first stage, the ROM-based bootloader, starts up the VideoCore GPU.

2. The second-stage bootloader (this is bootcode.bin on the SD card on devices before Raspberry Pi 4, and in SPI
EEPROM on Raspberry Pi 4 and 5):

a. On Raspberry Pi 4 and 5, the second-stage bootloader will start up the HDMI system, interrogate the display for
possible modes, and then set up the display appropriately. At this point, the display is used to provide basic
diagnostic data.

b. The bootloader diagnostic display (07 Dec 2022 onwards) will display the status of any attached displays
(whether Hotplug Detect (HPD) is present, and whether an EDID block was recovered from the display).

3. The VideoCore firmware (start.elf) is loaded and run. This will take over control of the HDMI system, read the EDID
block from any attached displays, and show the rainbow screen on those displays.

4. The Linux kernel boots

a. During kernel boot, KMS will take over control of the HDMI system from the firmware. Once again the EDID
block is read from any attached displays, and this information is used to set up the Linux console and desktop.

]
How HDMI is dealt with during booting 4



Troubleshooting KMS HDMI output

Possible problems and symptoms

The most common failure symptom experienced when moving to KMS is an initially good boot, with the bootloader
screen and then the rainbow screen appearing, followed after a few seconds by the display going black and not coming
back on. The point at which the display goes black is the point during the kernel booting process when the KMS driver
takes over running the display from the firmware. The Raspberry Pi is currently running in all respects except for the HDMI
output, so if SSH is enabled then you should be able to log in to the device by that route. The green SD card access LED
will usually flicker occasionally.

It is also possible that you will see no HDMI output at all: no bootloader display, and no rainbow screen. This can usually
be attributed to a hardware fault.

]
Possible problems and symptoms 5



Troubleshooting KMS HDMI output

Diagnosing the fault

No HDMI output at all

It is possible that the device has not booted at all, but this is outside of the remit of this white paper.

Assuming that the observed behaviour is a display problem, the lack of HDMI output during any part of the booting
process is usually due to a hardware fault. There are several possible options:

e Defective HDMI cable

o Try a new cable. Some cables, especially very cheap ones, may not contain all the required communication
lines (e.g. hotplug) for Raspberry Pi to detect the display successfully.

e Defective HDMI port on Raspberry Pi
o If you are using a Raspberry Pi 4 or 5, try the other HDMI port.
o Defective HDMI port on the monitor
o Sometimes the HDMI port on a monitor or TV can wear out. Try a different port if the device has one.

o Rarely, a display device may only provide EDID data when turned on, or when the correct port is selected. To
check, make sure that the device is on and that the correct input port is selected.

e Display device is not asserting the hotplug detect line

Initial output, then the screen goes black
If the display comes up but then goes off during Linux kernel boot, there are several possible causes, and these are
usually related to a problem reading the EDID from the display device.

As can be seen from the section above dealing with the boot sequence, the EDID is read at several different points during
the boot process, and each of these reads is done by a different piece of software. The final read, when KMS takes over, is
carried out by unaltered upstream Linux kernel code, and this does not handle defective EDID formats as well as the
earlier firmware software. This is why the display can stop working correctly once KMS takes over.

There are several ways to confirm whether KMS is failing to read the EDID, and two of these are as follows.

Check the bootloader diagnostic screen (Raspberry Pi 4 and 5 only)

© NoTE

Bootloader diagnostics require a recent bootloader. You can upgrade to the latest version using these instructions:
https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#updating-the-bootloader

Remove the SD card and reboot the Raspberry Pi. Press ESC on the Install 0S screen, and the diagnostic screen should
appear on the display device. There should be a line on the display that starts with display: — for example:

display: DISPO: HDMI HPD=1 EDID=ok #2 DISP1: HPD=0 EDID=none #0

This output from a Raspberry Pi 4 shows that the system detected an HDMI display on HDMI port 0, the hotplug detect is
asserted, and the EDID was read OK. Nothing was found on HDMI port 1.

]
No HDMI output at all 6


https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#updating-the-bootloader

Troubleshooting KMS HDMI output
]

Check whether the KMS system detected an EDID

To check this you will need to log in to the Raspberry Pi device over SSH from a different computer. SSH can be enabled
when creating an SD card image with Raspberry Pi Imager, using the Advanced Settings options. Enabling SSH on an SD
card that has already been imaged is a little more complicated: you will need to use another computer to add a file named
ssh to the boot partition. Replace the SD card in the original Raspberry Pi and power it up. This should enable SSH, with an
IP address allocated by DHCP.

Once logged in, type the following at the terminal prompt to display the contents of any EDID detected (you may need to
change HDMI-A-1 to HDMI-A-2 depending on which HDMI port on the Raspberry Pi the display device is connected to):

cat /sys/class/drm/card?-HDMI-A-1/edid

If there are no folders named card?-HDMI-A-1 or similar, then is likely that no EDID could be read from the display device.

O NoOTE

In the case where the EDID is read successfully, there is a useful virtual file in the same folder, called modes, which
when displayed shows all the possible modes the EDID claims the device supports.

Initial output, then the screen goes black 7



Troubleshooting KMS HDMI output

Mitigations

Hotplug detect failure

If both the firmware and KMS fail to find an attached monitor, it could be a hotplug detection failure — i.e., the Raspberry
Pi does not know a device has been plugged in, so it doesn't check for an EDID. This could be caused by a bad cable, or a
display device that does not assert hotplug correctly.

You can force a hotplug detect by altering the kernel command line file (cmd1ine. txt) that is stored in the boot partition of
a Raspberry Pi OS SD card. You can edit this file on another system, using whatever editor you prefer. Add the following to
the end of the cmdline. txt file:

video=HDMI-A-1:1280x720@60D

If you are using the second HDMI port, replace HDMI-A-1 with HDMI-A-2. You can also specify a different resolution and
frame rate, but make sure you choose ones that the display device supports.

O NoOTE

Documentation on the kernel command line settings for video can be found here: https://www kernel.org/doc/
Documentation/fb/modedb.txt

@ WARNING

Older graphics stacks supported the use of a config. txt entry to set hotplug detect, but at the time of writing this has
not been implemented on KMS. It may be supported in future firmware releases. The config.txt entry is
hdmi_force_hotplug, and you can specify the specific HDMI port that the hotplug applies to using either
hdmi_force_hotplug:0=1 or hdmi_force_hotplug:1=1. Note that the nomenclature for KMS refers to the HDMI ports
as 1and 2, while Raspberry Piuses 0 and 1.

EDID problems

A minority of display devices are incapable of returning an EDID if they are turned off, or when the wrong AV input is
selected. This can be an issue when the Raspberry Pi and the display devices are on the same power strip, and the
Raspberry Pi device boots faster than the display. With devices like this, you may need to provide an EDID manually.

Even more unusually, some display devices have EDID blocks that are badly formatted and cannot be parsed by the KMS
EDID system. In these circumstances, it may be possible to read an EDID from a device with a similar resolution and use
that.

In either case, the following instructions set out how to read an EDID from a display device and configure KMS to use it,
instead of KMS trying to interrogate the device directly.

Copying an EDID to a file

Creating a file containing EDID metadata from scratch is not usually feasible, and using an existing one is much easier. It
is generally possible to obtain an EDID from a display device and store it on the Raspberry Pi's SD card so it can be used
by KMS instead of getting an EDID from the display device. The easiest option here is to ensure that the display device is
up and running and on the correct AV input and that the Raspberry Pi has started up the HDMI system correctly. From the

]
Hotplug detect failure 8


https://www.kernel.org/doc/Documentation/fb/modedb.txt
https://www.kernel.org/doc/Documentation/fb/modedb.txt

Troubleshooting KMS HDMI output

terminal, you can now copy the EDID to a file with the following command:

sudo cp /sys/class/drm/card?-HDMI-A-1/edid /lib/firmware/myedid.dat

Finding an EDID using a pre-Bookworm OS release

On Raspberry Pi OS releases before Bookworm, there is a tool called tvservice that can be used to dump an EDID from
the display device when using the legacy graphics stack.

© NoTE

As Raspberry Pi 5 only supports Bookworm and newer releases, this process is not available on that model.

You need to boot the device in a non-KMS mode that does succeed in booting to the desktop or console, then copy the
EDID that the firmware will (hopefully) successfully read to a file.

1. Boot to legacy graphics mode.

a. Edit config.txt in the boot partition, making sure to run your editor using sudo, and change the line that says
dtoverlay=vc4-kms-v3d to #dtoverlay=vc4-kms-v3d.

b. Reboot.
2. The desktop or login console should now appear.

a. Using the terminal, copy the EDID from the attached display device to a file with the following command:

tvservice -d myedid.dat
sudo mv myedid.dat /lib/firmware/

Using a file-based EDID instead of interrogating the display device

Edit /boot/cmdline. txt, making sure to run your editor using sudo, and add the following to the kernel command line:

drm.edid_firmware=myedid.dat

You can apply the EDID to a specific HDMI port as follows:

drm.edid_firmware=HDMI-A-1:myedid.dat

If necessary, boot back into KMS mode by doing the following:

1. Edit config.txt in the boot partition, making sure to run your editor using sudo, and change the line that says
#dtoverlay=vc4-kms-v3d to dtoverlay=vc4-kms-v3d.

2. Reboot.

EDID problems 9



Troubleshooting KMS HDMI output

O NoTE

If you use a file-based EDID, but still have problems with hotplug, you can force hotplug detection by adding the
following to the kernel command line: video=HDMI-A-1:D.

. ______________________________________________________________________________________________________________________________________________________|
EDID problems 10



@ Raspberry Pi

Raspberry Pi is a trademark of the Raspberry Pi Foundation

Raspberry Pi Ltd



	Troubleshooting KMS HDMI output
	Colophon
	Legal Disclaimer Notice
	Document version history
	Scope of document

	Introduction
	Terminology

	The HDMI system and the graphics drivers
	How HDMI is dealt with during booting

	Possible problems and symptoms
	Diagnosing the fault
	No HDMI output at all
	Initial output, then the screen goes black
	Check the bootloader diagnostic screen (Raspberry Pi 4 and 5 only)
	Check whether the KMS system detected an EDID


	Mitigations
	Hotplug detect failure
	EDID problems
	Copying an EDID to a file
	Finding an EDID using a pre-Bookworm OS release
	Using a file-based EDID instead of interrogating the display device



