

EMC Test Report

For

Raspberry Pi Trading Limited

On

Raspberry Pi Camera V2

Report No. TRA-029291-44-00A

20th November 2015

Report Number: TRA-029291-44-00A

Copy Number: PDF

> REPORT ON THE EMC TESTING OF A Raspberry Pi Trading Limited Raspberry Pi Camera V2 WITH RESPECT TO SPECIFICATION EN 55032:2012, EN 55024:2010, EN 61000-3-2:2014 AND EN 61000-3-3:2013

TEST DATES: 11/11/15 to 18/11/15

Written by:	Mortin Ball	M.Baker Senior EMC Test Engineer
Approved by: Date:	20 th November 2015	M.Leach Department Manager - EMC
Distribution:		
Copy 1: Elemer Copy 2: Raspbe Copy 3: Not Ap	erry Pi Trading Limited	

Company Reg No. 02536659

RF682 3.0

[1] THIS DOCUMENT MAY BE REPRODUCED ONLY IN ITS ENTIRETY AND WITHOUT CHANGE [2] THE RESULTS CONTAINED IN THIS DOCUMENT RELATE ONLY TO THE ITEM(S) TESTED

Element Materials Technology Warwick Ltd. Registered in England and Wales. Registered Office: 5 Fleet Place, London, EC4M 7RD

1 Revision Record

Issue Number	Issue Date	Revision History	
А	20/11/15	Original	

RF682 3.0 3 of 50

2 Summary

TEST REPORT NUMBER:	TRA-029291-44-00A
PURPOSE OF TEST:	Electromagnetic Compatibility – Emissions and Immunity
TEST SPECIFICATION:	EN 55032:2012, EN55024:2010, EN61000-3-2:2014 and EN61000-3-3:2013
DEVIATIONS FROM SPECIFICATION:	Not Applicable
EQUIPMENT UNDER TEST (EUT):	Raspberry Pi Camera V2
EUT SERIAL NUMBER:	None
TEST RESULT:	Measured As Compliant Given any modifications stated in the relevant section of this report. The display, expander and audio ports of the Raspberry Pi A+ support equipment were not terminated and are excluded from the scope of the report
MANUFACTURER/AGENT:	Raspberry Pi Trading Limited
ADDRESS:	Mount Pleasant House Mount Pleasant Cambridge CB30RN
CLIENT CONTACT:	Mike Stimson
ORDER NUMBER:	PO-0185
TEST DATES:	11/11/15 to 18/11/15
TESTED BY:	M.Baker Element

RF682 3.0 4 of 50

3 Contents

1	Revision Record	
2	Summary	
3	Contents	
4	Introduction	7
5	Normative References	
	5.1 EN 55032 References	
	5.2 EN 55024 References	
	5.3 EN 61000-3-2 References	
	5.4 EN 61000-3-3 References	
6	Equipment Under Test	
Ŭ	6.1 EUT Identification	
	6.2 System Equipment	
	6.3 EUT Mode of Operation	
	6.3.1 Emissions	
	6.3.2 Immunity	
	6.4 EUT Monitoring	
		11
7	Block Diagram	
8	Test Standard Selection	
	8.1 Product Standard	13
	8.2 Basic Test Standard Selection	14
9	Performance Criteria	
	9.1 General Performance Criteria	
	9.2 Specification Based Performance Criteria	
	9.2.1 Annex B – Data Processing Equipment Performance Criteria	
	9.3 Actual Performance Criteria	18
10		
	10.1 General	
	10.2 Electrostatic Discharge Test Parameters	
	10.3 Electrostatic Discharge Levels	19
	10.4 EUT Test Results	20
	10.4.1 Air Discharge	20
	10.4.2 Contact Discharge	20
11		21
	11.1 General	21
	11.2 Radiated RF Test Parameters	21
	11.3 Radiated RF Test Frequencies	
	11.4 EUT Test Results	
12		
	12.1 General	
	12.2 Electrical Fast Transient Test Parameters	
	12.3 Electrical Fast Transient Test Levels	
	12.4 EUT Test Results	24
13	Voltage Surge Immunity as per EN 61000-4-5:2014	25
	13.1 General	25
	13.2 Voltage Surge Test Parameters	
	13.3 Voltage Surge Test Levels	
	13.4 EUT Test Results	
14		
14		
	14.1 General	۷/
		27
	14.3 Conducted RF Test Frequencies	28
4 -	14.3 Conducted RF Test Frequencies14.4 EUT Test Results	28 29
15	14.3 Conducted RF Test Frequencies	28 29 30
15	14.3 Conducted RF Test Frequencies	28 29 30 30
15	14.3 Conducted RF Test Frequencies	28 29 30 30 30
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results	28 29 30 30 30 30
15	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012	28 29 30 30 30 31
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012 16.1 General	28 30 30 30 31 31
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results	28 29 30 30 30 31 31 31
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012 16.1 General 16.2 Radiated Emission Test Parameters 16.3 EUT Test Results	28 29 30 30 30 31 31 31 32
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012 16.1 General 16.2 Radiated Emission Test Parameters 16.3 EUT Test Results 16.3.1 Radiated Emissions Test Data –30MHz to 1GHz	28 29 30 30 31 31 31 32 32
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012 16.1 General 16.2 Radiated Emission Test Parameters 16.3 EUT Test Results 16.3.1 Radiated Emissions Test Data –30MHz to 1GHz 16.3.2 Radiated Emissions Test Data – 1GHz to 6GHz	28 29 30 30 31 31 31 32 32 33
	14.3 Conducted RF Test Frequencies 14.4 EUT Test Results Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004 15.1 General 15.2 Voltage Dips and Short Interruptions Test Levels 15.3 EUT Test Results Radiated Emissions as per EN 55032:2012 16.1 General 16.2 Radiated Emission Test Parameters 16.3 EUT Test Results 16.3.1 Radiated Emissions Test Data –30MHz to 1GHz 16.3.2 Radiated Emissions Test Data – 1 GHz to 6 GHz	28 29 30 30 31 31 31 32 32 33

17.2 Conducted Emission Test Parameters	
17.3 EUT Test Results	35
17.3.1 Conducted Emissions Test Data	35
Harmonic Current Emissions as per EN 61000-3-2:2014	36
18.1 General	36
18.2 Harmonic Current Emissions Test Parameters	36
19 Voltage Fluctuations and Flicker as per EN 61000-3-3:2013	37
19.1 General	
19.2 Voltage Fluctuations and Flicker Test Parameters	37
20 Test Equipment List – Element Hull	38
21 EMC Modifications	
22 Conclusion	
23 Measurement Uncertainty	42
24 APPENDIX A – PHOTOGRAPHS	44

4 Introduction

This report TRA-029291-44-00A presents the results of the EMC testing on a Raspberry Pi Trading Limited, Raspberry Pi Camera V2 to specifications EN 55032:2012, EN 55024:2010, EN 61000-3-2:2014 and EN 61000-3-3:2013.

The testing was carried out for Raspberry Pi Trading Limited by Element, an independent test house, at their EMC test facility located at:

П Flement Malvern Element Skelmersdale 100 Frobisher Business Park Unit 1 Pendle Place Leigh Sinton Road Malvern Skelmersdale Worcestershire West Lancashire **WR14 1BX** WN8 9PN UK UK \bowtie Element Wimborne Element Hull 74-78 Condor Close Unit E Woolsbridge Industrial Park South Orbital Trading Park Three Legged Cross Hedon Road Wimborne Hull Dorset East Yorkshire **BH21 6SU** HU9 1NJ UK UK

This report details the configuration of the equipment, the test methods used and any relevant modifications where appropriate.

All test and measurement equipment under the control of the laboratory and requiring calibration is subject to an established programme and procedures to control and maintain measurement standards. The quality management system meets the principles of ISO 9001, and has quality control procedures for monitoring the validity of tests undertaken. Records and sufficient detail are retained to establish an audit trail of calibration records relating to its test results for a defined period. Under control of the established calibration programme, key quantities or values of the test and measurement instrumentation are within specification and comply with the relevant traceable internationally recognised and appropriate standard specifications, which are UKAS calibrated as such where these properties have a significant effect on results. Participation in inter-laboratory comparisons and proficiency testing ensures satisfactory correlation of results conform to Element's own procedures, as well as statistical techniques for analysis of test data providing the appropriate confidence in measurements.

It is Element policy to always use the latest version of any applicable base test standards. Where a product specification calls up a superseded dated revision or an undated basic standard, the latest version will be used. This may be a deviation to the product standard if dated references have been used.

Throughout this report EUT denotes equipment under test.

RF682 3.0 7 of 50

5 Normative References

5.1 EN 55032 References

- *IEC 60083:2006, Plugs and socket-outlets for domestic and similar general use standardised in member countries of IEC
- EN 55011:2009 + A1:2010, Industrial, scientific and medical (ISM) radio-frequency equipment Electro-magnetic disturbance characteristics Limits and methods of measurement
- EN 55013:2013, Sound and television broadcast receivers and associated equipment Radio disturbance characteristics – Limits and methods of measurement
- *EN 55016-1-1:2010 + A1:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-1: Radio disturbance and immunity measurement apparatus – Measuring apparatus
- *EN 55016-1-2:2004 + A2:2006, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measurement apparatus – Ancilliary equipment – Conducted disturbances
- *EN 55016-1-4:2010 + A1:2012, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-4: Radio disturbance and immunity measuring apparatus – Ancillary equipment – Radiated disturbances
- *EN 55016-2-3:2010 +A1:2010, Specification for radio disturbance and immunity measuring apparatus and methods – Part 2-3: Methods of measurement of disturbance and immunity – Radiated disturbance measurements
- *EN 55016-2-1:2009 +A1:2011, Specification for radio disturbance and immunity measuring apparatus and methods –Part 2-1: Methods of measurement of disturbances and immunity – Conducted disturbance measurements
- *EN 55016-2-3:2010+A1:2010, Specification for radio disturbance and immunity measuring apparatus and methods –Part 2-3: Methods of measurement of disturbances and immunity – Radiated disturbance measurements
- *EN 55016-4-2:2011, Specification for radio disturbance and immunity measuring apparatus and methods Part 4-2: Uncertainties, statistics and limit modelling – Measurement instrumentation uncertainty
- *CISPR 16-4-3:2004+A1:2006, Specification for radio disturbance and immunity measuring apparatus and methods –Part 4-3: Uncertainties, statistics and limit 8odelling – Statistical considerations in the determination of EMC compliance of mass-produced products
- EN 61000-4-6:2009, Electromagnetic compatibility (EMC) Part 4-6: Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields

5.2 EN 55024 References

- *IEC 60050(161) ed1.0 (1990-08), International Electrotechnical Vocabulary (IEV) Chapter 161: Electromagnetic compatibility.
- *EN 60318-1:2009, Electroacoustics Simulators of human head and ear Part 1: Ear simulator for the measurement of supra-aural and circumaural earphones.
- EN 61000-4-2:2009, Electromagnetic compatibility (EMC) Part 4-2 Testing and measurement techniques Electrostatic discharge immunity test.
- EN 61000-4-3:2006 + A2:2010, Electromagnetic compatibility (EMC) Part 4-3: Testing and measurement techniques - Radiated, radio-frequency, electromagnetic field immunity test.
- EN 61000-4-4:2012, Electromagnetic compatibility (EMC) Part 4-4: Testing and measurement techniques Electrical fast transient/burst immunity test.
- EN 61000-4-5:2006, Electromagnetic compatibility (EMC) Part 4-5: Testing and measurement techniques Surge immunity test.
- *EN 61000-4-6:2014, Electromagnetic compatibility (EMC) Part 4-6: Testing and measurement techniques Immunity to conducted disturbances, induced by radio-frequency fields.
- EN 61000-4-8:2010, Electromagnetic compatibility (EMC) Part 4-8: Testing and measurement techniques Power frequency magnetic field immunity test.
- EN 61000-4-11:2004, Electromagnetic compatibility (EMC). Part 4-11: Testing and measurement techniques Voltage dips, short interruptions and voltage variations immunity tests.
- *EN 55016-1-2:2004 + A2:2006, Specification for radio disturbance and immunity measuring apparatus and methods – Part 1-2: Radio disturbance and immunity measurement apparatus – Ancillary equipment – Conducted disturbances
- *EN 55020:2007 + A1:2011, Sound and television broadcast receivers and associated equipment Immunity characteristics – Limits and methods of measurement.
- EN 55022:2010, Information technology equipment Radio disturbance characteristics Limits and methods of measurement

RF682 3.0 8 of 50

^{*}Indicates a specification or standard or specific amendment that is not listed on the Element UKAS scope of accreditation.

5.3 EN 61000-3-2 References

- *IEC 60050(131) ed2.0 (2002-06), International Electrotechnical Vocabulary (IEV) Chapter 131: Electric and magnetic circuits
- *IEC 60050(161) ed1.0 (1990-08), International Electrotechnical Vocabulary (IEV) Chapter 161: Electromagnetic
 compatibility.
- *EN 60107-1:1997, Methods of measurement on receivers for television broadcast transmissions Part 1: General considerations Measurements at radio and video frequencies
- *EN 60155:1995, Glow-starters for fluorescent lamps.
- *IEC 60268-1 ed20. (1985-01), Sound system equipment Part 1: General
- *EN 60268-3:2013, Sound systems equipment Part 3: Amplifiers.
- *EN 60335-2-2:201 + A1:2013, Household and similar electrical appliances Safety Part 2-2: Particular requirements for vacuum cleaners and water-suction cleaning appliances
- *EN 60335-2-14:2006 + A1:2008, Household and similar electrical appliances Safety Part 2-14: Particular requirements for kitchen machines.
- *EN 60974-1:2012, Arc welding equipment Part 1: Welding power sources
- *EN 61000-2-2:2002, Electromagnetic compatibility (EMC) Part 2: Environment Section 2: Compatibility levels
 for low-frequency conducted disturbances and signalling in public low-voltage power supply systems
- *IEC/TS 61000-3-4 ed1.0 (1998-10), Electromagnetic compatibility (EMC) Part 3-4: Limits Limitation of emission of harmonics currents in low-voltage power supply systems for equipment with rated current greater than 16A
- *EN 61000-3-12:2011 Electromagnetic compatibility (EMC) Part 3-12: Limits Limits for harmonic currents produced by equipment connected to public low-voltage systems with input current > 16 A and ≤ 75 A per phase
- *EN 61000-4-7:2002 + A1:2009, Electromagnetic compatibility (EMC) Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto
- ITU-R Recommendation BT.471.1, Nomenclature and description of colour bar signals

5.4 EN 61000-3-3 References

- *IEC/TR 60725 ed3.0 (2012-06), Consideration of reference impedances and public supply impedances for use in determining disturbance characteristics of electrical equipment having a rated current ≤75 A per phase
- *EN 60974-1:2012, Arc welding equipment Part 1: Welding power sources
- EN 61000-3-2:2006 +A2:2009, Electromagnetic compatibility (EMC) Part 3-2: Limits Limits for harmonic current emissions (equipment input current ≤16 A per phase).
- *EN 61000-4-7:2002 + A1:2009, Electromagnetic compatibility (EMC) Part 4-7: Testing and measurement techniques – General guide on harmonics and interharmonics measurements and instrumentation, for power supply systems and equipment connected thereto
- ITU-R Recommendation BT.471.1, Nomenclature and description of colour bar signals

RF682 3.0 9 of 50

^{*}Indicates a specification or standard or specific amendment that is not listed on the Element UKAS scope of accreditation.

6 Equipment Under Test

6.1 EUT Identification

• Name: Raspberry Pi Camera V2

Serial Number: None

Model Number: Raspberry Pi Camera V2

Software Revision: Raspbian Jesse – release 2015-09-24

• Build Level / Revision Number: V2.0

• Element Sample: S01

Incorporating the following external cables / test ports;

Туре		Description	Outdoor Cable Y / N	Test Length	Max Installation Length
1	CSI camera	Ribbon cable	N	15cm	15cm

6.2 System Equipment

Equipment listed below forms part of the overall test setup and is required for equipment functionality and/or monitoring during testing. The compliance levels achieved in this report relate only to the EUT and not items given in the following list.

Name: Raspberry Pi A+

Model Number: Raspberry Pi A+

• Element Sample: S02

Name: Stontronics Ltd Plug top PSU

Part Number: T5454DV

Model Number: DSA-12CA-05

• Build Level / Revision Number: Production

Element Sample: S04

Name: Panasonic TV

Model Number: TX-L22-X20E

Build Level / Revision Number: ProductionElement Equipment reference: RFG683

Name: BELKIN USB Keyboard
Model Number: F8206-BLK-USB
Build Level / Revision Number: R2.0

RF682 3.0 10 of 50

6.3 EUT Mode of Operation

6.3.1 Emissions

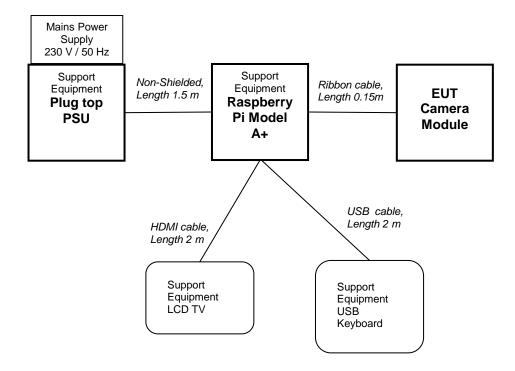
The camera was generating a live image, which was displayed on a supporting monitor via a Raspberry Pi A+.

6.3.2 Immunity

The camera was generating a live image of a moving clock, which was displayed on a supporting monitor via a Raspberry Pi A+.

6.4 EUT Monitoring

During immunity testing the performance of the EUT was assessed by visually monitoring the supporting display (connected via HDMI).


6.5 EUT Description

The EUT was a colour video camera, connected to a Raspberry Pi A+ via a short 15cm ribbon cable.

RF682 3.0 11 of 50

7 Block Diagram

The following diagram shows basic EUT interconnections with cable type and cable lengths identified.

RF682 3.0 12 of 50

8 Test Standard Selection

8.1 Product Standard

The following product standard was used as the basis of the test levels required and has been deemed the most appropriate product standard to apply to the Raspberry Pi Camera V2, or has been requested by the manufacturer:

EN 55032	Electromagnetic compatibility of multimedia equipment – Emission requirements
EN 55024	Information technology equipment – Immunity characteristics – Limits and methods of measurement
EN 61000-3-2	Electromagnetic compatibility (EMC) – Part 3-2: Limits – Limits for harmonic current emissions (equipment input current ≤16 A per phase)
EN 61000-3-3	Electromagnetic compatibility (EMC) – Part 3-3: Limits – Limitation of voltage changes, voltage fluctuations and flicker in public low-voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection

RF682 3.0

8.2 Basic Test Standard Selection

Basic Test Standard	Applicable		Notes
EN 61000-4-2:2009 – Electrostatic Discharge Immunity			Note 4
EN 61000-4-3:2006 +A1:2008 +A2:2010 - Radiated RF Immunity	٥	3	
EN 61000-4-4:2012 – Electrical Fast Transients Immunity	۵		
EN 61000-4-5:2014 – Voltage Surge Immunity	۵		
EN 61000-4-6:2014 – Conducted RF Immunity	۵	3	
EN 61000-4-8:2010 – Power Frequency Magnetic Field Immunity			Note 3
EN 61000-4-11:2004 – Voltage Dips and Short Interruptions Immunity	\boxtimes		
	Class A	Class B	
EN 55032:2012 – Radiated Emissions		\boxtimes	
EN 55032:2012 – Conducted Emissions			
EN 55032:2012 – Conducted Asymmetric Mode Emissions (AAN Measurement per EN 55032:2012 C4.1.6.2)			Note 2
EN 55032:2012 – Conducted Asymmetric Mode Emissions (150 Ω / Current Probe per EN 55032:2012 C4.1.6.3)			Note 2
EN 55032:2012 – Conducted Asymmetric Mode Emissions (CVP / Current Probe per EN 55032:2012 C4.1.6.4)			Note 2
EN 61000-3-2:2014 – Harmonic Current Emissions			
EN 61000-3-3:2013 – Voltage Fluctuations and Flicker	ker 🛚		

Notes:

RF682 3.0 14 of 50

^[1] Tests marked with an asterisk* in the Normative References Section indicate a dated specification or specific amendment which falls outside the laboratories UKAS scope of accreditation, but are within the laboratories scope of competence. However, Element are UKAS accredited for the superseded version of the specification.

^[2] Not applicable, EUT contains no test port.

^[3] Not applicable, EUT contains no devices susceptible to magnetic field.

^[4] No direct discharge applied as the EUT has no enclosure so ESD precautions to be implemented during normal use as detailed in the Raspberry Pi documentation.

9 Performance Criteria

9.1 General Performance Criteria

The test results may be classified on the basis of the operating conditions and the functional specifications of the equipment under test, according to the following performance criteria taken from EN 55024:2010.

Performance Criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a minimum performance level specified by the manufacturer when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance Criterion B

After the test, the EUT shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the EUT if used as intended.

Performance Criterion C

During and after testing, a temporary loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions.

Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

RF682 3.0 15 of 50

9.2 Specification Based Performance Criteria

The following specific criteria were used from Annexes A to H of EN 55024:2010, as applicable:

EN55024 Annex	Applicable
Annex A - Telephony Terminal Equipment	
Annex B - Data Processing Equipment	
Annex C - Local Area Networks (LAN)	
Annex D - Printers and Plotters	
Annex E - Copying Machines	
Annex F - Automatic Teller Machines (ATM)	
Annex G - Point of Sale Terminals (POST)	
Annex H - xDSL Terminal Equipment	

9.2.1 Annex B – Data Processing Equipment Performance Criteria

B.2 Read, Write and Storage of Data

Performance Criterion A

During the test storage devices shall maintain normal operation both in read/write and in standby conditions.

Performance Criterion B

During and after the test failures which can be recovered by read and write retries are permissible (temporary delay in processing caused by this process is acceptable). Normal operation of the EUT shall be restored after the test, self-recovery to the conditions immediately prior to the application of the test is accepted where this is a normal means of recovery. In these cases, operator response is permitted to re-initialise an operation.

Performance Criterion C

Failures during test that result in a delay in processing or a system abort, which after testing can be recovered to normal operation by reset or reboot, are permissible.

B.3 Data Display

Performance Criterion A

During the test, when seen from the normal viewing distance, the EUT shall operate with no change beyond the manufacturer's specification, in flicker, colour, focus and jitter (except for the power frequency magnetic field test).

Power Frequency Magnetic Field Test

For CRT monitors, the following also applies:

The jitter shall be measured when the CRT monitor is immersed in a continuous magnetic field of 1 A/m (r.m.s.) at one of the power frequencies of 50 Hz or 60 Hz.

For displays with pixels having continuous luminance distributions only, jitter may be measured using a measuring microscope of at least 20 power. The movement is determined by visual

RF682 3.0

alignment of the microscope cursor or comparator reticle with the extreme positions of the centroid or edge of a character or test object during the observation period.

For any display type, a special display-measuring device may be used. This device shall determine, on a scan-by-scan basis, the relative location of a character or test object. If a device is used that determines movement along the horizontal and vertical axes only, the extent of the jitter shall be defined as the square root of the sum of the squares of the maximum horizontal and vertical differences.

Observations shall extend for periods of at least 4 s. Measuring devices that sample scans shall accumulate a number of scans equivalent to at least 4s of continuous observation.

The maximum jitter permitted is given by:

$$J \le \frac{(C - 0.3)x2.5}{33.3}$$

Where:

J is the jitter (in mm);

C is the character height (in mm).

Alternatively, a field of 50 A/m may be applied, and a transparent graduated mask used to assess the jitter. In this case, the jitter shall not exceed 50 times the value in the above formula.

The EUT shall be tested in two positions, both perpendicular to the magnetic field.

Performance Criterion B

Screen disturbances during the application of the test are permissible if they self-recover after removal of the external disturbance.

Performance Criterion C

Failures during the test that cannot self-recover after removal of the external disturbance, but which can be recovered after the test to normal operation by reset or reboot are permissible.

B.4 Data input

Performance Criterion A

During testing unintended input from an input device is not allowed. During testing input devices shall maintain the specified quality image data.

Performance Criterion B

During testing keyboard/mouse "lock up" is not allowed.

For EUT with manually inputted data that can be confirmed by reading the display, errors are permissible during testing if they can be recognised by the operator and easily corrected.

Performance Criterion C

Failures during test that result in a delay in processing or a system abort, which after testing can be recovered to normal operation by reset or reboot, are permissible.

B.5 Data printing

Performance Criterion A

During testing printers shall maintain the specified printing quality and normal operation.

Performance Criterion B

During testing no degradation of the printing quality beyond the manufacturer's specification (such as distortion of character(s) or missing pixels) is permissible. A paper feed failure is allowed if after removal of the jammed sheets the job is automatically recovered and there is no loss of printed information.

RF682 3.0 17 of 50

Performance Criterion C

During testing printing errors or omission of character(s) which require reprinting are permissible. Input/output failures that occur during testing that can be recovered to normal operation after testing by reset or reboot are also permissible.

B.6 Data processing

Performance Criterion A

During testing failures which do not influence the specified operation within the product specification, and which do not prevent automatic recovery are permissible.

Performance Criterion B

During testing failures which are recovered automatically but cause temporary delay in processing are permissible.

Performance Criterion C

Failures during testing that result in a delay in processing after the external disturbance is removed, but which can be recovered after testing to normal operation by a reset or reboot are permissible.

Failures during testing that result in a system abort, which can be recovered to normal operation after testing by reset or reboot, are permissible.

Failures during testing that are followed by alarms and can be recovered to normal operation by the operator's intervention after testing are permissible.

9.3 Actual Performance Criteria

Performance Criterion A

During and after the test the EUT shall continue to operate as intended without operator intervention. During the test there is to be no interruption or noticeable degradation (colour loss, macro blocking and freezing of image) on the displayed video on the supporting TV outputted via the HDMI port.

Performance Criterion B

During and after the test the EUT shall continue to operate as intended. During the test there may be interruption or noticeable degradation (colour loss, macro blocking and freezing of image) on the displayed video on the supporting TV outputted via the HDMI port providing the EUT self recovered upon completion of the test.

Performance Criterion C

During the application of the test, complete loss of function is allowed, but must self recover without user intervention upon completion of the test.

RF682 3.0 18 of 50

10 Electrostatic Discharge Immunity as per EN 61000-4-2:2009

10.1 General

This test simulates human body static discharge that equipment may be subject to. The test also includes discharges that may occur in the vicinity of the equipment thereby setting up a rapidly fluctuating short term electric field.

Two types of discharge are used – Air and Contact. Air discharges are applied to points that are classified as insulating surfaces and contact discharges are applied directly with no air interface on to conducting metallic surfaces of the EUT.

Where an EUT is defined as a class II apparatus then contact points will be connected to ground using two 470 k Ω resistors to provide a leakage path to ground so as to prevent charge build up.

The test setup used complies with all the dimension requirements set out in EN 61000-4-2:2009. The discharge generator is UKAS calibrated as such.

10.2 Electrostatic Discharge Test Parameters

Energy Storage Capacitor: 150 pF Discharge Resistance: 330 Ω

Output Voltage: Up to 8 kV – Contact Discharge

Up to 15 kV – Air Discharge

Discharge Rise Time: 0.7 to 1 ns
Deviation from Basic Test Standard: None

Testing will only be carried out (unless otherwise stated so in this section) if the following environmental conditions are met:

Ambient temperature in the range 15 °C to 35 °C Relative humidity in the range 30 % to 60 % Atmospheric pressure in the range 860 mbar to 1060 mbar

10.3 Electrostatic Discharge Levels

The following test voltages were used for contact and air discharge:

Air Discharge	±2 kV	\boxtimes	Contact	±2 kV	\boxtimes
_	±4 kV	\boxtimes	Discharge	±4 kV	\boxtimes
	±6 kV		_		
	+8 k\/	\square			

A minimum of 50 discharges at each point with a minimum of 4 test points as per EN 55024:2010+A1:2015* Section 4.2.1(a) were applied.

Note: Refer to EN 55024:2010 Clause 4.2.1 Electrostatic discharges (ESD):

"The test procedure shall be in accordance with IEC 61000-4-2, with the following modifications and clarifications...

...For contact discharge, the requirement to apply ESD discharges at lower levels, as defined in Clause 5 of IEC 61000-4-2, is not applicable."

RF682 3.0 19 of 50

10.4 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

10.4.1 Air Discharge

Test levels applied are identified in the previous section.

		EUT Test Points	Performance Criteria Achieved	Performance Criteria Required
ſ	1	Plug Top PSU enclosure	Α	В

10.4.2 Contact Discharge

Test Levels applied are identified in the previous section.

	EUT Test Points	Performance Criteria Achieved	Performance Criteria Required
1	Horizontal Coupling Plane (HCP)	Α	В
2	Vertical Coupling Plane (VCP) – 4 sides	Α	В

Note: As the Raspberry Pi A+ and Raspberry Camera V2 has no enclosure, no direct electrostatic discharges were applied to these, only indirect discharges (HCP and VCP) were applied.

RF682 3.0 20 of 50

11 Radiated RF Immunity as per EN 61000-4-3:2006 +A1:2008 +A2:2010

11.1 General

This test simulates the threat imposed by operating the equipment in the vicinity of intentional transmitters both fixed and mobile.

The specification calls up a uniform field test area, Element meet the field uniformity requirements set out in EN 61000-4-3:2006 +A1:2008 +A2:2010 in the frequency range 80 MHz to 1 GHz.

A computer controlled pre-calibrated level is applied to the antenna and the frequency is swept across the range of test at a predefined step size and time.

No corrections to the selected test levels below were made to factor the uncertainty budget for this test, as instructed by the reference standard, hence field strength is as reported.

The test setup used complies with all the dimension requirements set out in EN 61000-4-3:2006 +A1:2008 +A2:2010.

11.2 Radiated RF Test Parameters

Frequency Range:	80 MHz to 1 GHz
Spot Frequencies: Note: When specified in Annex A of EN 55024, an additional comprehensive functional test shall be carried out at the selected spot frequencies.	 Not Applicable – EUT not covered by Annex A 80 MHz ± 1 % 120 MHz ± 1 % 160 MHz ± 1 % 230 MHz ± 1 % 434 MHz ± 1 % 460 MHz ± 1 % 600 MHz ± 1 % 863 MHz ± 1 % 900 MHz ± 1 %
Modulation Type:	Amplitude – Sine Wave
Amplitude Modulation Frequency:	☑ 1 kHz☐ 400 Hz
Dwell Time per Momentary Frequency:	
Test Voltage: Note: See frequency range above for any additional information on test levels applied in each range.	3 V/m
Step Increment:	1 % of the momentary frequency
Antenna Polarisations:	Horizontal and Vertical
Number of EUT Faces Tested:	
Deviation from Basic Test Standard:	None

RF682 3.0 21 of 50

11.3 Radiated RF Test Frequencies

A full list of frequency points is given here in MHz, the exact frequencies used will be dependent upon the test range selected in the table above.

80.000	109.995	151.237	207.942	285.908	393.106	540.498	743.152
80.800	111.095	152.749	210.021	288.767	397.037	545.903	750.584
81.608	112.206	154.277	212.121	291.654	401.008	551.362	758.089
82.424	113.328	155.820	214.243	294.571	405.018	556.875	765.670
83.248	114.462	157.378	216.385	297.517	409.068	562.444	773.327
84.081	115.606	158.952	218.549	300.492	413.158	568.068	781.060
84.922	116.762	160.541	220.734	303.497	417.290	573.749	788.871
85.771	117.930	162.146	222.942	306.532	421.463	579.487	796.760
86.629	119.109	163.768	225.171	309.597	425.678	585.281	804.727
87.495	120.300	165.406	227.423	312.693	429.934	591.134	812.775
88.370	121.503	167.060	229.697	315.820	434.234	597.046	820.902
89.253	122.718	168.730	231.994	318.978	438.576	603.016	829.111
90.146	123.945	170.418	234.314	322.168	442.962	609.046	837.402
91.047	125.185	172.122	236.657	325.390	447.391	615.137	845.776
91.958	126.437	173.843	239.024	328.644	451.865	621.288	854.234
92.878	127.701	175.581	241.414	331.930	456.384	627.501	862.777
93.806	128.978	177.337	243.828	335.249	460.948	633.776	871.404
94.744	130.268	179.111	246.266	338.602	465.557	640.114	880.118
95.692	131.571	180.902	248.729	341.988	470.213	646.515	888.920
96.649	132.886	182.711	251.216	345.408	474.915	652.980	897.809
97.615	134.215	184.538	253.729	348.862	479.664	659.510	906.787
98.591	135.557	186.383	256.266	352.350	484.461	666.105	915.855
99.577	136.913	188.247	258.828	355.874	489.305	672.766	925.013
100.573	138.282	190.129	261.417	359.433	494.198	679.494	934.263
101.579	139.665	192.031	264.031	363.027	499.140	686.289	943.606
102.595	141.061	193.951	266.671	366.657	504.132	693.151	953.042
103.621	142.472	195.891	269.338	370.324	509.173	700.083	962.572
104.657	143.897	197.850	272.031	374.027	514.265	707.084	972.198
105.703	145.336	199.828	274.752	377.767	519.408	714.155	981.920
106.760	146.789	201.826	277.499	381.545	524.602	721.296	991.739
107.828	148.257	203.845	280.274	385.360	529.848	728.509	1000.000
108.906	149.740	205.883	283.077	389.214	535.146	735.794	

Additional spot frequencies due to equipment related harmonics / declared EUT sensitive frequencies: None

11.4 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

Performance Criteria	Performance Criteria
Achieved	Required
Α	А

RF682 3.0 22 of 50

12 Electrical Fast Transient Immunity as per EN 61000-4-4:2012

12.1 General

This test applies very fast low energy transients on to the specific line under test. This simulates inductive load switching either directly coupled from equipment on the same supply line or capacitively coupled between cable bundles.

Coupling is achieved directly via the Coupling Decoupling Network (CDN) incorporated within the interference generator, or applied via a capacitive clamp with a distributed capacitance of 150 pF.

The test setup used complies with all the dimension requirements set out in EN 61000-4-4:2012. The test generator is UKAS calibrated as such.

12.2 Electrical Fast Transient Test Parameters

Pulse Rise Time Pulse Duration: Pulse Repetition Test Burst Dura Test Burst Perio Dwell: Polarity: Deviation from I	n Frequency: ation: od:	dard:	5 ns 50 ns 5 kHz 15 ms 300 ms 1 minute per te Positive and N None		
For mains testing	ng the following	coupling points a	are used:		
(L1, L2,NeutralEarth orLive on	, L3, N and E in only nly ly	n simultaneously the case of three ally in the case o	e phase system	SU) s)	pplicable
12.3 Electrica	al Fast Transie	nt Test Levels			
The following te	est voltages wer	e used if applical	ble as per the c	able group type:	
AC Supply Line	±0.5 kV ±1 kV Not Applicable		DC Supply Line	±0.5 kV Not Applicable	
Signal Lines	±0.5 kV Not Applicable				

RF682 3.0 23 of 50

12.4 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Direct Application	Performance Criteria Achieved	Performance Criteria Required
1	ac power	A^1	В

Note 1: during the application of the test the supporting USB keyboard 'NUM Lock', 'CAP Lock' and 'SCROLL Lock' LED indicators intermittently flashed. Normal operation of the device remained throughout.

RF682 3.0 24 of 50

13 Voltage Surge Immunity as per EN 61000-4-5:2014

13.1 General

This test applies a high energy voltage surge on to the selected line under test. This simulates the surge created on the mains and also capacitively coupled on to signal cables during an electrical storm.

- Coupling to dc and mains is achieved directly via the Coupling Decoupling Network (CDN) incorporated within the interference generator.
- Coupling on shielded signal lines is achieved directly as per the specification using the 2 Ω source impedance of the generator only using a 20 m length of cable.
- Coupling to non-shielded signal lines is achieved directly using a 40 Ω CDN giving a 40 Ω + 2 Ω = 42 Ω source impedance.

The test setup used complies with all the dimension requirements set out in EN 61000-4-5:2014. The test generator is UKAS calibrated as such.

13.2 Voltage Surge Test Parameters

Pulse Rise Time:	1.2 μs 🛛 / 10 μs 🔀
Pulse Duration:	50 μs 🔲 / 700 μs 🔲
Pulse Repetition Frequency:	Maximum of 1 per minute
Phase Angles:	0° ⊠, 90° ⊠, 180° ⊠, 270° ⊠, N/A □
Polarity:	Positive and Negative
Number of Discharges:	Five per polarity per phase angle per voltage
Deviation from Basic Test Standard:	None

For mains testing the following coupling points are used:

- Live to Earth only (L1, L2 and L3 individually to E in the case of three phase systems)
- Neutral to Earth only
- Live to Neutral
- The following combinations in the case of three phase systems (L1-L2, L2-L3, L1-L3, L1-N, L2-N, L3-N)

13.3 Voltage Surge Test Levels

The following test voltages were used if applicable as per the cable group type:

AC Supply Line – Common Mode	±0.5 kV ±1 kV ±2 kV Not Applicable	AC Supply Line – Differential Mode	±0.5 kV ±1 kV Not Applicable	
DC Supply Line – Common Mode	±0.5 kV Not Applicable	DC Supply Line – Differential Mode	±0.5 kV Not Applicable	
Signal / Control Lines	±0.5 kV ±1 kV ±2 kV ±4 kV Not Applicable			

RF682 3.0 25 of 50

13.4 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Mains/DC supply cables	Performance Criteria Achieved	Performance Criteria Required
1	ac power	Α	В

RF682 3.0 26 of 50

14 Conducted RF Immunity as per EN 61000-4-6:2014

14.1 General

This test simulates the threat imposed by operating the equipment in the vicinity of intentional transmitters both fixed and mobile. It simulates the main coupling method for longer wavelengths (3.75 m to 2 km) that couple onto cables that interface with the EUT.

Two coupling methods are used depending upon the type of cable under test:

Clamp

Coupling / Decoupling Network (CDN)

A computer controlled pre-calibrated level is applied to the coupling interface and the frequency is swept across the range of test at a predefined step size and time.

No corrections to the selected test levels below were made to factor the uncertainty budget for this test, as instructed by the reference standard, hence field strength is as reported.

The test setup used complies with all the dimension requirements set out in EN 61000-4-6:2014.

14.2 Conducted RF Test Parameters

Frequency Range:	150 kHz to 80 MHz
Spot Frequencies: Note: When specified in Annex A of EN 55024, an additional comprehensive functional test shall be carried out at the selected spot frequencies.	 Not Applicable – EUT not covered by Annex A □ 0.2 MHz ±1 % □ 1 MHz ±1 % □ 7.1 MHz ±1 % □ 13.56 MHz ±1 % □ 21 MHz ±1 % □ 27.12 MHz ±1 % □ 40.68 MHz ±1 %
Amplitude Modulation Frequency:	☑ 1 kHz☐ 400 Hz
Dwell Time per Momentary Frequency:	
Test Voltage Mains Supply Cables:	3 V r.m.s.
Test Voltage DC Supply Cables:	3 V r.m.s.
Test Voltage Signal/Control Cables:	3 V r.m.s.
Step Increment:	1 % of the momentary frequency
Deviation from Basic Test Standard:	None

RF682 3.0 27 of 50

14.3 Conducted RF Test Frequencies

A full list of frequency points is given here in MHz; the exact frequencies used will be dependent upon the test range selected in the table above.

0.150	0.284	0.536	1.013	1.916	3.622	6.847	12.944	24.470	46.260
0.152	0.286	0.541	1.024	1.935	3.658	6.915	13.073	24.715	46.722
0.153	0.289	0.547	1.034	1.954	3.695	6.985	13.204	24.962	47.189
0.155	0.292	0.552	1.044	1.974	3.732	7.054	13.336	25.212	47.661
0.156	0.295	0.558	1.055	1.994	3.769	7.125	13.470	25.464	48.138
0.158	0.298	0.563	1.065	2.014	3.807	7.196	13.604	25.718	48.619
0.159	0.301	0.569	1.076	2.034	3.845	7.268	13.740	25.975	49.106
0.161	0.304	0.575	1.087	2.054	3.883	7.341	13.878	26.235	49.597
0.162	0.307	0.580	1.097	2.075	3.922	7.414	14.016	26.498	50.093
0.164	0.310	0.586	1.108	2.095	3.961	7.488	14.157	26.763	50.594
0.166	0.313	0.592	1.119	2.116	4.001	7.563	14.298	27.030	51.099
0.167	0.316	0.598	1.131	2.137	4.041	7.639	14.441	27.300	51.610
0.169	0.320	0.604	1.142	2.159	4.081	7.715	14.586	27.573	52.127
0.171	0.323	0.610	1.153	2.180	4.122	7.792	14.731	27.849	52.648
0.172	0.326	0.616	1.165	2.202	4.163	7.870	14.879	28.128	53.174
0.174	0.329	0.622	1.177	2.224	4.205	7.949	15.028		
								28.409	53.706
0.176	0.333	0.629	1.188	2.246	4.247	8.029	15.178	28.693	54.243
0.178	0.336	0.635	1.200	2.269	4.289	8.109	15.330	28.980	54.786
0.179	0.339	0.641	1.212	2.292	4.332	8.190	15.483	29.270	55.333
0.181	0.343	0.648	1.224	2.315	4.376	8.272	15.638	29.562	55.887
0.183	0.346	0.654	1.237	2.338	4.419	8.355	15.794	29.858	56.446
0.185	0.349	0.661	1.249	2.361	4.464	8.438	15.952	30.157	57.010
0.187	0.353	0.667	1.261	2.385	4.508	8.523	16.112	30.458	57.580
0.189	0.356	0.674	1.274	2.409	4.553	8.608	16.273	30.763	58.156
0.190	0.360	0.681	1.287	2.433	4.599	8.694	16.435	31.070	58.738
0.192	0.364	0.687	1.300	2.457	4.645	8.781	16.600	31.381	59.325
0.194	0.367	0.694	1.313	2.482	4.691	8.869	16.766	31.695	59.918
0.196	0.371	0.701	1.326	2.506	4.738	8.957	16.933	32.012	60.517
0.198	0.375	0.708	1.339	2.531	4.786	9.047	17.103	32.332	61.122
0.200	0.378	0.715	1.352	2.557	4.833	9.137	17.274	32.655	61.734
0.202	0.382	0.723	1.366	2.582	4.882	9.229	17.446	32.982	62.351
0.204	0.386	0.730	1.380	2.608	4.931	9.321	17.621	33.312	62.975
0.206	0.390	0.737	1.393	2.634	4.980	9.414	17.797	33.645	63.604
0.208	0.394	0.744	1.407	2.661	5.030	9.508	17.975	33.981	64.240
0.210	0.398	0.752	1.421	2.687	5.080	9.603	18.155	34.321	64.883
0.212	0.402	0.759	1.436	2.714	5.131	9.699	18.336	34.664	65.532
0.215	0.406	0.767	1.450	2.741	5.182	9.796	18.520	35.011	66.187
0.217	0.410	0.775	1.464	2.769	5.234	9.894	18.705	35.361	66.849
0.219	0.414	0.782	1.479	2.796	5.286		18.892		67.517
						9.993		35.715	
0.221	0.418	0.790	1.494	2.824	5.339	10.093	19.081	36.072	68.192
0.223	0.422	0.798	1.509	2.852	5.392	10.194	19.272	36.433	68.874
0.226	0.426	0.806	1.524	2.881	5.446	10.296	19.464	36.797	69.563
	0.431	0.814							
0.228			1.539	2.910	5.501	10.399	19.659	37.165	70.259
0.230	0.435	0.822	1.555	2.939	5.556	10.503	19.856	37.536	70.961
0.232	0.439	0.831	1.570	2.968	5.611	10.608	20.054	37.912	71.671
0.235	0.444	0.839	1.586	2.998	5.668	10.714	20.255	38.291	72.388
	0.448	0.847				10.821	20.457		73.112
0.237			1.602	3.028	5.724			38.674	
0.239	0.453	0.856	1.618	3.058	5.781	10.930	20.662	39.061	73.843
0.242	0.457	0.864	1.634	3.089	5.839	11.039	20.869	39.451	74.581
0.244	0.462	0.873	1.650	3.120	5.898	11.149	21.077	39.846	75.327
		0.882							
0.247	0.466		1.667	3.151	5.957	11.261	21.288	40.244	76.080
0.249	0.471	0.890	1.683	3.182	6.016	11.373	21.501	40.647	76.841
0.252	0.476	0.899	1.700	3.214	6.076	11.487	21.716	41.053	77.609
0.254	0.480	0.908	1.717	3.246	6.137	11.602	21.933	41.464	78.385
0.257	0.485	0.917	1.734	3.279	6.198	11.718	22.152	41.878	79.169
0.259	0.490	0.927	1.752	3.312	6.260	11.835	22.374	42.297	79.961
0.262	0.495	0.936	1.769	3.345	6.323	11.954	22.598	42.720	80.000
0.264	0.500	0.945	1.787	3.378	6.386	12.073	22.824	43.147	000
0.267	0.505	0.955	1.805	3.412	6.450	12.194	23.052	43.579	
0.270	0.510	0.964	1.823	3.446	6.515	12.316	23.282	44.014	
0.273	0.515	0.974	1.841	3.481	6.580	12.439	23.515	44.455	
0.275	0.520	0.984	1.860	3.515	6.646	12.563	23.750	44.899	
0.278	0.526	0.993	1.878	3.550	6.712	12.689	23.988	45.348	
0.281	0.531	1.003	1.897	3.586	6.779	12.816	24.228	45.802	

Additional spot frequencies due to equipment harmonics / declared EUT sensitive frequencies: None.

RF682 3.0 28 of 50

14.4 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	EUT test points – Mains/DC supply cables	Coupling Method	Performance Criteria Achieved	Performance Criteria Achieved
1	ac power	CDN-M2	Α	Α

RF682 3.0 29 of 50

15 Voltage Dips and Short Interruptions Immunity as per EN 61000-4-11:2004

15.1 General

This test simulates short duration dips and interruptions that the equipment may be subjected to when connected to the public utility supply.

The test setup used complies with all the dimension requirements set out in EN 61000-4-11:2004. The test generator is UKAS calibrated as such.

15.2 Voltage Dips and Short Interruptions Test Levels

The following test voltages were used if applicable as per the cable group type:

Phase Shift: 0°

Reduction: Sequence >95 % reduction for 10 ms

30 % reduction for 500 ms

Interruption: Solution | Solution

Reduction Repetition Rate: 10 s

Number of Reductions/Interruptions: 3

Deviation from Basic Test Standard: None

15.3 EUT Test Results

For pass/fail criteria definitions please see section 9 of this report. Where a departure from the pass/fail criteria is given for a specific test then this will be noted in this section after the results table.

Test levels applied are identified in the previous section.

	Mains Supply Cable – Voltage Reductions	Performance Criteria Achieved	Performance Criteria Required
1	>95 % reduction for 10 ms	Α	В
2	30 % reduction for 500 ms	Α	С

	Mains Supply Cable – Voltage Interruptions	Performance Criteria	Performance Criteria
		Achieved	Required
1	100 % reduction for 5 s	C ¹	С

Note1: during the application of the 5 second voltage interruption the EUT lost power, upon completion of the test the EUT rebooted and returned to its normal operating mode without user intervention.

RF682 3.0 30 of 50

16 Radiated Emissions as per EN 55032:2012

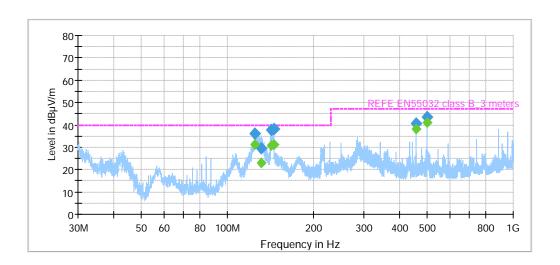
16.1 General

This test measures radiated electromagnetic emissions that may emanate from EUT enclosures and cables. This test ensures the protection of broadcast and telecommunication services used in the vicinity of the EUT.

The test setup used complies with all the dimension requirements set out in EN 55032:2012. The semi-anechoic chamber used meets the site attenuation measurements required by CISPR 16-1-4:2007 +A1:2007 +A2:2008.

Measurement instrumentation used meets the requirements of CISPR 16-4-2:2003, and expanded laboratory uncertainties U_{lab} are less than or equal to U_{cispr} . Table 1. Therefore no compensation is required to the actual measured level in determining compliance with the applied limit.

An initial scan is carried out in order to establish a frequency list that is attributable to the EUT. Any emissions measurements that fall within 20 dB μ V/m of the limit line are then maximised by rotating the equipment through 360° and raising/lowering the antenna through 1 to 4 m height for each frequency of interest.

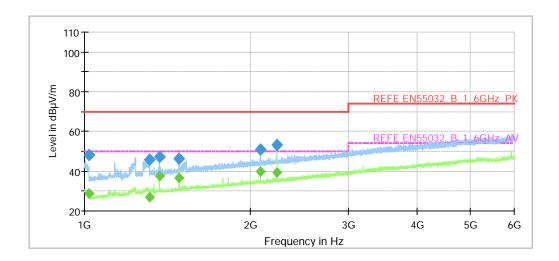

16.2 Radiated Emission Test Parameters

EUT Classification:	∐ A	⊠ B			
Highest EUT Frequency:	800 MHz				
Frequency Range:	⊠30 MHz to 1 GHz⊠ 1 GHz to 2 GHz⊠ 2 GHz to 5 GHz⊠ 5 GHz to 6 GHz	N/A − Max EUT Freq Used <108 MHzN/A − Max EUT Freq Used <500 MHz			
Measurement Bandwidth:					
Video Bandwidth: (measurements >1 GHz)					
Detectors:	Peak (≤1 GHz scan / ≥1 GHz Final Measurements) Average (≥1 GHz Final Measurements) Quasi-peak (≤1 GHz Final Measurements)				
Quasi-peak Detector Dwell:	Minimum 2 s per Frequency Point				
Frequency Step Size:	50 kHz (Measureme	ents <1 GHz)			
Antenna Height:	1 to 4 Metres				
EUT to Antenna Distance:	☐ 1 m	⊠ 3 m			
EUT Measurement Height:	☑ 0.8 m Insulated Table☑ 0.1 m Insulated Support/Pallet				
EUT Operation Voltage:	V ac				
EUT Operating Frequency:	⊠ 50 Hz	☐ dc			

RF682 3.0 31 of 50

16.3 EUT Test Results

16.3.1 Radiated Emissions Test Data -30MHz to 1GHz



Note: The Blue Markers on the above plots are Peak detectors and are included for information purposes only, EN 55032:2012 requires only the Quasi-Peak detector (Green Markers) in this frequency range to meet the specification limit represented. The marker details are included in table format below.

Frequency (MHz)	QuasiPeak (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
124.588267	31.0	15000.0	120.000	100.0	٧	170.0	-18.3	9.0	40.0
130.908587	23.0	15000.0	120.000	100.0	٧	263.0	-18.3	17.0	40.0
142.073160	30.8	15000.0	120.000	100.0	V	11.0	-18.4	9.2	40.0
145.205453	31.4	15000.0	120.000	100.0	V	11.0	-18.6	8.6	40.0
456.010387	38.2	15000.0	120.000	100.0	Н	182.0	-12.7	8.8	47.0
500.008133	41.2	15000.0	120.000	155.0	Н	167.0	-11.8	5.8	47.0

RF682 3.0 32 of 50

16.3.2 Radiated Emissions Test Data – 1GHz to 6GHz

Frequency (MHz)	MaxPeak (dBμV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1017.946000	48.2	15000.0	1000.000	100.0	٧	170.0	-7.8	21.8	70.0
1309.208000	45.8	15000.0	1000.000	100.0	٧	-1.0	-4.5	24.2	70.0
1367.950000	47.1	15000.0	1000.000	105.0	٧	10.0	-3.9	22.9	70.0
1484.890000	46.2	15000.0	1000.000	115.0	٧	15.0	-2.7	23.8	70.0
2079.186000	50.8	15000.0	1000.000	100.0	Н	55.0	1.3	19.2	70.0
2227.464000	53.3	15000.0	1000.000	108.0	V	0.0	2.1	16.7	70.0

Frequency (MHz)	Average (dBµV/m)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Polarization	Azimuth (deg)	Corr. (dB)	Margin (dB)	Limit (dBµV/m)
1017.946000	28.8	15000.0	1000.000	100.0	٧	170.0	-7.8	21.2	50.0
1309.208000	27.1	15000.0	1000.000	100.0	٧	-1.0	-4.5	22.9	50.0
1367.950000	37.4	15000.0	1000.000	105.0	V	10.0	-3.9	12.6	50.0
1484.890000	36.6	15000.0	1000.000	115.0	V	15.0	-2.7	13.4	50.0
2079.186000	39.7	15000.0	1000.000	100.0	Н	55.0	1.3	10.3	50.0
2227.464000	39.4	15000.0	1000.000	108.0	V	0.0	2.1	10.6	50.0

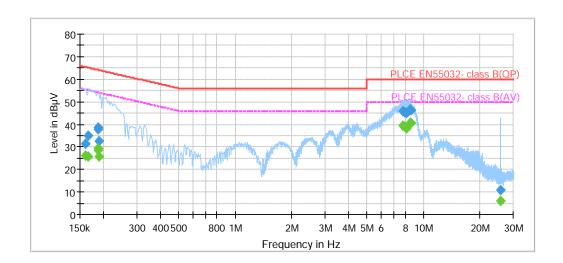
RF682 3.0 33 of 50

17 Conducted Emissions as per EN 55032:2012

17.2 Conducted Emission Test Parameters

17.1 General

This test measures conducted noise that may be present on an EUT's power supply cable. This test ensures the protection of broadcast and telecommunication services used in the vicinity of the EUT.


The test setup used complies with all the dimension requirements set out in EN 55032:2012. Measurement instrumentation used meets the requirements of CISPR 16-4-2:2003, and expanded laboratory uncertainties U_{lab} are less than or equal to U_{cispr} . Table 1. Therefore no compensation is required to the actual measured level in determining compliance with the applied limit.

EUT Classification:	□ A	⊠В
Frequency Range:	150 kHz to 30 MHz	
Frequency Step Size:	4.5 kHz/5 kHz	
Measurement Bandwidth:	9 kHz/10 kHz	
Detectors:	Peak (scan) Quasi-peak (Final Me Average (Final Meas	,
Quasi-peak Detector Dwell:	Minimum 2 s per freq	quency point
EUT Measurement Height:	□ 0.8 m Insulated Target □ 0.1 m Insulated S	able upport/Pallet Mounted
EUT Operation Voltage:	Vac	
EUT Operating Frequency:	⊠ 50 Hz	☐ dc

RF682 3.0 34 of 50

17.3 EUT Test Results

17.3.1 Conducted Emissions Test Data

Frequency (MHz)	QuasiPeak (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.160600	31.2	15000.0	9.000	GND	N	10.1	34.3	65.4
0.166000	35.0	15000.0	9.000	GND	L1	10.2	30.2	65.2
0.187275	38.7	15000.0	9.000	GND	N	10.1	25.5	64.2
0.187875	37.6	15000.0	9.000	GND	N	10.1	26.5	64.1
0.189475	32.5	15000.0	9.000	GND	L1	10.2	31.6	64.1
7.799000	45.7	15000.0	9.000	GND	N	10.4	14.3	60.0
7.927500	45.4	15000.0	9.000	GND	N	10.4	14.6	60.0
8.110000	44.8	15000.0	9.000	GND	N	10.4	15.2	60.0
8.507500	46.5	15000.0	9.000	GND	N	10.5	13.5	60.0
8.575000	46.0	15000.0	9.000	GND	N	10.5	14.0	60.0
25.732500	10.7	15000.0	9.000	GND	N	11.3	49.3	60.0

Frequency (MHz)	Average (dBµV)	Meas. Time (ms)	Bandwidth (kHz)	PE	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.160600	26.2	15000.0	9.000	GND	N	10.1	29.3	55.4
0.166000	25.6	15000.0	9.000	GND	L1	10.2	29.6	55.2
0.187275	28.7	15000.0	9.000	GND	N	10.1	25.5	54.2
0.187875	29.2	15000.0	9.000	GND	N	10.1	24.9	54.1
0.189475	25.6	15000.0	9.000	GND	L1	10.2	28.4	54.1
7.799000	39.2	15000.0	9.000	GND	N	10.4	10.8	50.0
7.927500	39.0	15000.0	9.000	GND	N	10.4	11.0	50.0
8.110000	38.3	15000.0	9.000	GND	N	10.4	11.7	50.0
8.507500	40.5	15000.0	9.000	GND	N	10.5	9.5	50.0
8.575000	40.5	15000.0	9.000	GND	N	10.5	9.5	50.0
25.732500	5.9	15000.0	9.000	GND	N	11.3	44.1	50.0

RF682 3.0 35 of 50

18 Harmonic Current Emissions as per EN 61000-3-2:2014

18.1 General

This test deals with the limitation of harmonic currents injected into the public supply system.

This test is applicable to electronic/electrical equipment having an input current up to and including 16 A/phase and intended to be connected to the public low voltage distribution network of either 50 Hz or 60 Hz line frequency. There are no limits defined for equipment operating at a voltage less than 230 V.

The measurement duration is defined by the 5 % repeatability requirement, which serves the purpose of identifying the necessary observation period.

For the purpose of harmonic current limitation and application of limits the equipment is classified as follows:

Class A:

- balanced three-phase equipment;
- household appliances, excluding equipment identified as class D;
- tools, excluding portable tools;
- · dimmers for incandescent lamps;
- audio equipment.
- Equipment not specified in one of the three other classes shall be considered as class A
- equipment.

Class B:

- portable tools:
- arc welding equipment which is not professional equipment.

Class C:

• lighting equipment.

Class D:

Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:

- personal computers and personal computer monitors;
- television receivers.

Fauinment Classification

The following exemptions exist for which no limits are specified:

- equipment with a rated power of 75 W or less, other than lighting equipment;
- professional equipment with a total rated power greater than 1 kW;
- symmetrically controlled heating elements with a rated power less than or equal to 200 W;
- independent dimmers for incandescent lamps with a rated power less than or equal to 1 kW.

18.2 Harmonic Current Emissions Test Parameters

Equipment Classification.	☐ Class D
EUT Exemptions:	
EUT Measurement Height:	
Line Frequency:	⊠ 50 Hz □ 60 Hz
Measurement Duration:	N/A – EUT <75 W rated power
Harmonic Current Repeatability:	N/A – EUT <75 W rated power
Deviation from Basic Test Standard:	None

M Class A

RF682 3.0 36 of 50

19 Voltage Fluctuations and Flicker as per EN 61000-3-3:2013

19.1 General

This test deals with the limitation voltage fluctuations and flicker impressed on the public supply system.

This test is applicable to electronic/electrical equipment having an input current up to and including 16 A/phase and intended to be connected to the public low voltage distribution network. There are no limits defined for equipment operating at a voltage less than 230 V or line frequency of 60 Hz.

The following limits apply:

- the value of Pst shall not be greater than 1.0;
- the value of Plt shall not be greater than 0.65;
- the value of d(t) during a voltage change shall not exceed 3.3 % for more than 500 ms;
- the relative steady-state voltage change, dc, shall not exceed 3.3 %;
- the maximum relative voltage change dmax, shall not exceed
 - 4 % without additional conditions;
 - 6 % for equipment which is:
 - switched manually, or
 - switched automatically more frequently than twice per day, and also has either a
 delayed restart (the delay being not less than a few tens of seconds), or manual
 restart, after a power supply interruption.

7 % for equipment which is

- attended whilst in use (for example: hair dryers, vacuum cleaners, kitchen equipment such as mixers, garden equipment such as lawn mowers, portable tools such as electric drills), or
- switched on automatically, or is intended to be switched on manually, no more than twice per day, and also has either a delayed restart (the delay being not less than a few tens of seconds) or manual restart, after a power supply interruption.

19.2 Voltage Fluctuations and Flicker Test Parameters

EUT Exemptions:	□ - EUT not likely to cause flicker
•	- Low EUT supply power and no switching
	- Input <20 A and within 1.5 A (see note 3)
	- Other (see note below)

RF682 3.0 37 of 50

20 Test Equipment List – Element Hull

The following test equipment was used:

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	Element Number	Actual Equipment Used
RF Pre-Amplifier	Hewlett Packard	8447D	2727A05574	H008	
Signal Generator	Rohde & Schwarz	SMG	883 744/070	H016	
Absorbing clamp	Schaffner	AMZ 41	15349	H017	
RF Current Probe	Rohde & Schwarz	ESH2-Z1	891 923/24	H026	
Bi-Cone Antenna	Eaton	96002	2500	H95	
Directional Coupler	Amplifier Research	DC2000	11526	H108	\boxtimes
AC Mains Transformer	Element	N/A	None	H122	
Receiver	Rohde & Schwarz	ESHS10	830051/002	H125	
Analyser/Receiver	Rohde & Schwarz	ESVS 20	872890/004	H126	
DRG Horn Antenna	EMCO	3115	9303-4027	H130	
CDN 2-wire	MEB	M2	10219	H186	\boxtimes
CDN 3-wire	MEB	M3	10239	H187	
LISN/AMN	Rohde & Schwarz	ESH3-Z5	838576/002	H189	\boxtimes
Log Periodic Antenna	EMCO	3146	9412-3925	H191	
Signal Generator	Marconi	2024	112176041	H227	
3 Phase LISN/AMN	Rohde & Schwarz	ESH2-Z5	832769/010	H233	
CDN 1-wire	MEB	M1	12026	H237	
T2 CDN / ISN	MEB	T2	12449	H239	
T4 CDN / ISN	MEB	T4	11424	H240	
Amplifier	Amplifier Research	150A100	18239	H242	\boxtimes
Amplifier	Amplifier Research	100W1000M1	18776	H243	
Bi-Log Antenna	Teseq	CBL6111	1855	H244	\boxtimes
Fast Transient Generator	Schaffner	NSG2025-1	1323	H271	
Capacitive Coupling Clamp	Schaffner	CDN 126	3034648	H272	
ESD Gun	Schaffner	NSG435	001865	H273	
Microwave Pre-Amplifier	Hewlett Packard	8449B	3008A00873	H307	
1 m Square Induction Loop	Element	N/A	None	H319	
CDN 118	Schaffner	SL400-187	143	H323	
1.5 m Square Induction Loop	Element	N/A	None	H330	
Magnetic Field Meter	EnviroMentor	MM-1	0254	H333	
Signal Generator	Marconi	2032	119626/042	H349	
Signal Generator	Rohde & Schwarz	SMP22	842194/007	H360	
T2 CDN / ISN	Schaffner	T200	16881	H375	
T4 CDN / ISN	Schaffner	T400	16908	H376	
Shielded CDN	Teseq	ST08	26589	H370	
Directional Coupler	Narda	3020A	40816	H379	
RF Power Meter	Amplifier Research	PM2002	305887	H380	
RF Power Meter	Amplifier Research	PM2002	301554	H381	\boxtimes
Spectrum Analyser	Agilent	E4407B	US39441062	H404	
Amplifier	Amplifier Research	50S1G4A	306696	H418	
Directional Coupler	Narda	3022	72444	H419	

RF682 3.0 38 of 50

Type of Equipment	Maker/ Supplier	Model Number	Serial Number	Element Number	Actual Equipment Used
Isotropic E-Field Probe	Dare	RadiSense IV	04D00215SNO-02	H429	
Flicker Unit	EM Test	DPA500	V0602101066	H455	
DVM Multimeter	Hewlett Packard	34401A	US36011922	H465	
T2 Balanced ISN	Fischer FCC	T2-02-09	20467	H483	
T2 Balanced ISN	Fischer FCC	T2-02-09	20468	H484	
T8 Balanced ISN	Fischer FCC	T8-02-09	N/A	H485	
T4 Balanced ISN	Fischer FCC	T4-02-09	20450	H486	
T4 Balanced ISN	Fischer FCC	T4-02-09	20451	H487	
Capacitive Voltage Probe	Schaffner	CVP220	18308	H627	
Horn Antenna	Q-Par Angus Ltd	QSH20S	5134	H630	
EM Clamp	Fischer	F-203I-23MM	537	H633	
AC Power Source	Schaffner	NSG2007	57875	H636	
EMC Multitester	EMC Partners	Transient 2000	925	H639	\boxtimes
ESD Gun	EMC Partners	ESD 2000	236	H639	\boxtimes
Variable Transformer	EMC Partners	VAR-EXT-1000	051	H639	\boxtimes
Amplifier	Amplifier Research	250W1000A	0326726	H644	\boxtimes
Bi-Log Antenna	Schaffner	CBL6140A	1058	H648	
75 Ω Directional Bridge	Agilent	86207A	MY31400111	H654	
Shielded ISN	Fischer FCC	ST08	26589	H655	
Spectrum Analyser	Agilent	E4404B	US40240716	H657	
1.6 m Square Helmholtz Coils	Element	N/A	None	H662	
Power Supply	Farnell	AP60/50	001037	H669	
75 Ω to 50 Ω pad	INMET	9070-50-75	None	H671	
75 Ω to 50 Ω pad	INMET	9070-50-75	None	H672	
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	101157	H674	
Bi-Log Antenna	Teseq	CBL6111	31217	H679	
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	0357.8810.54	H680	
1 m Square Helmholtz Coils	Element	N/A	None	H681	
Log Periodic Antenna	Rohde & Schwarz	HL050	100540	H682	\boxtimes
CAT 6 ISN	Teseq	ISN T8-CAT6	32192	H695	
8 Wire High Speed Surge CDN	Teseq	CDN HSS-2	38146	H696	
Signal Generator	Agilent	N5171B	MY53050700	H698	
Field Probe	DARE	RadiSense 6	10I00037SN036	H699	
Amplifier	TMD	PTS9612	17402	H700	
Analyser/Receiver	Rohde & Schwarz	ESU40	100005	H701	\boxtimes
RF Chamber	Belling Lee	Lab 5	None	H705	\boxtimes
RF Chamber	Ray Proof	Lab 6	None	H706	\boxtimes
RF Chamber	Ray Proof	Lab 7	None	H707	
RF Chamber	Panashield	Lab 10	None	H710	\boxtimes
Ground plane area	Element	Lab 17	None	H717	
Horn Antenna	FM Ltd	2240-2S	160356	REF820	

RF682 3.0 39 of 50

21 EMC Modifications

No modifications were performed during this assessment.

RF682 3.0 40 of 50

22 Conclusion

The EUT meets the performance requirements of the specification, when tested in a system configuration described in section 6 of this report.

Note should be taken of any modifications listed in the relevant section of this report.

The EUT achieved the following performance criteria during the test programme.

EMISSIONS

Test Standard	Test Order	Cla	ass	Pass
EN 55032:2012 – Radiated Emissions	2	A 🗌	В⊠	\boxtimes
EN 55032:2012 – Conducted Emissions	1	A 🗌	В⊠	\boxtimes

IMMUNITY

Basic Test Standard	Test Applicable		Performance Criteria Required	Performance Criteria Achieved
EN 61000-4-2:2009 – Electrostatic Discharge Immunity	6	\boxtimes	В	А
EN 61000-4-3:2006 +A1:2008 +A2:2010 – Radiated RF Immunity	7	\boxtimes	А	А
EN 61000-4-4:2012 – Electrical Fast Transients Immunity	3	\boxtimes	В	А
EN 61000-4-5:2014 – Voltage Surge Immunity	4	\boxtimes	В	А
EN 61000-4-6:2014 – Conducted RF Immunity	8	\boxtimes	А	А
EN 61000-4-11:2004 – Voltage Dips and Short Interruptions Immunity	5	\boxtimes	See Relevant Test Section	

RF682 3.0 41 of 50

23 Measurement Uncertainty

Transient testing:

Where a specification tolerance exists, the figure displayed is the calibration figure expanded by the calibration uncertainty. The worst case tolerance is then calculated and compared to the allowed specification tolerance.

Static Discharge (EN 61000-4-2)

Tolerance Parameter		Test Equ	ipment Inventor	y Number		Allowed
Tolerance Parameter	ESD6	ESD1	R0061	RFG273	UH01	Tolerance
Negative Discharge Current at 2 kV (First Peak)	5.90 %	5.90 %	7.15 %	12.30 %	6.46 %	15 %
Negative Discharge Current at 8 kV (First Peak)	12.68 %	12.68 %	6.37 %	12.99 %	7.37 %	15 %
Negative Discharge Current at 2 kV	14.37 %	14.37 %	14.90 %	11.72 %	18.60 %	30 %
Negative Discharge Current at 8 kV	16.09 %	16.09 %	9.87 %	13.05 %	9.67 %	30 %
Negative Discharge Voltage	2.32 %	1.86 %	2.52 %	2.64 %	3.31 %	5 %
Negative Rise Time at 2 kV	13.40 %	15.78 %	14.24 %	17.46 %	8.36 %	25 %
Negative Rise Time at 8 kV	16.20 %	10.41 %	16.20 %	17.46 %	6.54 %	25 %
Positive Discharge Current at 2 kV (First Peak)	9.85 %	7.78 %	8.53 %	11.55 %	6.32 %	15 %
Positive Discharge Current at 8 kV (First Peak)	11.58 %	10.42 %	7.56 %	12.61 %	6.01 %	15 %
Positive Discharge Current at 2 kV	14.90 %	18.13 %	12.78 %	13.84 %	11.78 %	30 %
Positive Discharge Current at 8 kV	16.09 %	16.09 %	17.02 %	16.23 %	10.53 %	30 %
Positive Discharge Voltage	2.65 %	1.99 %	2.62 %	4.03 %	2.32 %	5 %
Positive Rise Time at 2kV	14.80 %	15.50 %	15.36 %	16.22 %	9.82 %	25 %
Positive Rise Time at 8kV	13.96 %	8.63 %	18.44 %	14.99 %	6.96 %	25 %

Tofonous Bonomoton		Allowed			
Tolerance Parameter	L327	L085	RFG639	L697	Tolerance
Negative Discharge Current at 2 kV (First Peak)	6.90 %	10.56 %	11.27 %	7.28 %	15 %
Negative Discharge Current at 8 kV (First Peak)	12.30 %	6.25 %	13.52 %	8.28 %	15 %
Negative Discharge Current at 2 kV	24.72 %	13.43 %	17.90 %	20.73 %	30 %
Negative Discharge Current at 8 kV	7.78 %	15.43 %	25.23 %	10.93 %	30 %
Negative Discharge Voltage	2.65 %	1.99 %	4.96 %	2.52 %	5 %
Negative Rise Time at 2 kV	9.90 %	22.78 %	15.64 %	17.46 %	25 %
Negative Rise Time at 8 kV	10.18 %	22.36 %	13.12 %	20.68 %	25 %
Positive Discharge Current at 2 kV (First Peak)	7.45 %	12.82 %	13.10 %	6.53 %	15 %
Positive Discharge Current at 8 kV (First Peak)	10.42 %	8.62 %	11.05 %	6.15 %	15 %
Positive Discharge Current at 2 kV	22.37 %	12.72 %	15.55 %	6.14 %	30 %
Positive Discharge Current at 8 kV	11.92 %	12.72 %	23.77 %	13.84 %	30 %
Positive Discharge Voltage	2.01 %	4.03 %	5.33 %	3.97 %	5 %
Positive Rise Time at 2 kV	10.18 %	23.90 %	15.64 %	19.98 %	25 %
Positive Rise Time at 8 kV	6.96 %	23.48 %	14.24 %	20.54 %	25 %

Voltage Surge (EN 61000-4-5)

Voltage Surge (LIV 01000-4-3)							
Tolerance Parameter		Test Equipment Inventory Number					
Tolerance Farameter	UH159	UH42	L449	RFG639	L429	Tolerance	
Voltage, Positive Waveform	8.11 %	6.22 %	9.71 %	4.55 %	5.74 %	10 %	
Voltage, Negative Waveform	8.06 %	6.43 %	9.64 %	5.72 %	5.15 %	10 %	
Duration, Positive Waveform	4.90 %	7.11 %	7.32 %	27.63 %	11.63 %	20 %	
Duration, Negative Waveform	5.14 %	8.35 %	5.47 %	27.43 %	10.81 %	20 %	
Voltage Front Time, Positive Waveform	29.92 %	19.35 %	10.48 %	26.73 %	22.76 %	30 %	
Voltage Front Time, Negative Waveform	16.14 %	16.79 %	12.88 %	24.77 %	16.79 %	30 %	
Current, Positive Waveform	6.39 %	6.39 %	9.50 %	7.17 %	6.09 %	10 %	
Current Duration	6.50 %	6.50 %	19.40 %	9.84 %	19.89 %	20 %	
Current Front Time	19.43 %	19.43 %	11.97 %	11.35 %	13.39 %	20 %	
Current Undershoot	Inside Tolerance	Inside Tolerance	Inside Tolerance	Inside Tolerance	Outside Tolerance	30 % of Peak Current	

Tolerance Parameter		Allowed				
Tolerance Farameter	EMT3	UH415	R801-5-1/2	L952		Tolerance
Voltage, Positive Waveform	6.27%	4.59%	4.44%	4.59%		10%
Voltage, Negative Waveform	6.67%	5.91%	4.24%	5.91%		10%
Duration, Positive Waveform	19.16%	14.15%	27.22%	14.15%		20%
Duration, Negative Waveform	19.55%	13.87%	26.20%	13.87%		20%
Voltage Front Time, Positive Waveform	17.93%	11.51%	31.61%	27.88%		30%
Voltage Front Time, Negative Waveform	16.96%	11.51%	29.66%	27.88%		30%
Current, Positive Waveform	4.34%	4.34%	7.84%	8.25%		10%
Current Duration	19.25%	19.25%	7.98%	2.50%		20%
Current Front Time	10.58%	10.58%	11.04%	2.90%	_	20%
Current Undershoot	Inside Tolerance	Inside Tolerance	Inside Tolerance	Inside Tolerance		30% of Peak Current

Electrical Fast Transients (EN 61000-4-4)

Tolerance Parameter		Allowed				
	L448	UH161	L429	RFG639	EMT5	Tolerance
Positive Voltage	2.21%	11.92%	19.78%	5.40%	23.56%	20%
Negative Voltage	2.48%	12.94%	15.24%	5.83%	19.09%	20%
Source Impedance	11.91%	1.00%	20.21%	4.56%	27.91%	30%
Pulse Parameters (5ns)	7.16%	5.22%	7.52%	7.42%	7.21%	30%
Pulse Parameters (50ns)	19.13%	3.08%	24.38%	9.69%	18.29%	30%
Burst Parameters	2.32%	1.03%	2.32%	1.99%	2.32%	10%

RF682 3.0 42 of 50

Electrical Fast Transients (EN 61000-4-4)

Tolerance Parameter		Test Equipment Inventory Number					
i olerance Parameter	RFG271	UH383	L952			Tolerance	
Positive Voltage	16.61 %	23.56 %	8.71 %			20 %	
Negative Voltage	21.43 %	19.09 %	5.07 %			20 %	
Source Impedance	21.05 %	27.91 %	19.79 %			30 %	
Pulse Parameters (5ns)	20.92 %	7.21 %	16.27 %			30 %	
Pulse Parameters (50ns)	11.06 %	18.29 %	6.05 %			30 %	
Burst Parameters	2.32 %	2.32 %	1.00 %			10 %	

Voltage Dips and Interruptions (EN 61000-4-11)

		Toot Fau	ipment Inventor	v Numbor		Allowed
Tolerance Parameter		rest ⊑qu	ipment inventor	y Number		
roleiance i arameter	L429	L952	EMT1	RFG639	L415	Tolerance
Switching Time at 90 °	1.7952 µs	1.7442 %	2.2542 %	1.7952 %	4.08 %	5 µs Max
Switching Time at 270 °	1.9584 µs	1.7544 %	2.244 %	1.377 %	4.08 %	5 µs Max
Voltage Change with Load (70 % dip)	2.64 %	1.77 %	1.74 %	1.7 %	1.8 %	5 % Max
Voltage Change with Load (40 % dip)	3.07 %	4.04 %	1.74 %	1.7 %	1.8 %	5 % Max
Worst Case Phase Shift	3.384 %	5.65 °	3.15 °	3.15°	3.15 °	±10 °

Emissions and Immunity testing (non-transient):

All uncertainties listed are standard uncertainties multiplied by a coverage factor K = 2.00 for to give a 95 % confidence level.

Conducted Emissions Including Discontinuous Emissions

- [1] Conducted Emissions 9 kHz to 150 kHz = 3.7 dB
- [2] Conducted Emissions 150 kHz to 30 MHz = 3.4 dB

Radiated Emissions (E-Field)

- [1] Radiated Emissions 30 MHz to 1 GHz using CBL6111/2 Bilog Antenna = 4.6 dB
- [2] Radiated Emissions 1 GHz to 6 GHz using HL050 Log Periodic Antenna = 5.1 dB
- [3] Radiated Emissions 6 GHz to 26 GHz using HL050 Log Periodic Antenna = 5.2 dB

Conducted Immunity CDN Testing

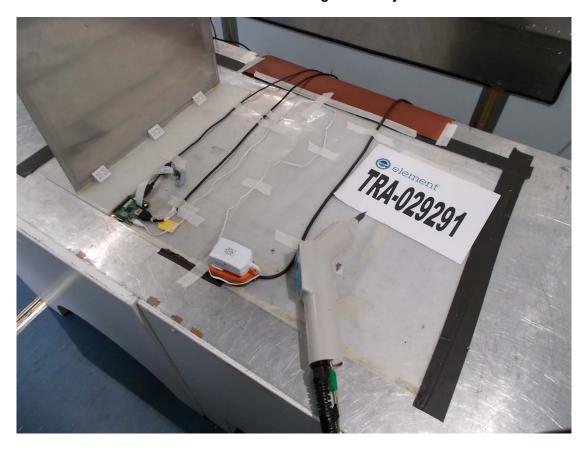
- [1] Re-establishment of pre-calibrated field = 1.6 dB
- [2] Limiting of injected level using monitor coil = 2.1 dB

Radiated Immunity 80 MHz to 3 GHz

- [1] Re-establishment of pre-calibrated field level = 2.12 dB
- [2] Dynamic feedback calibrated field level = 2.16 dB

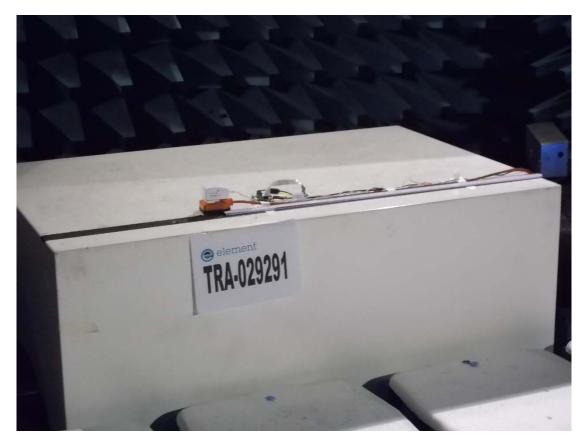
Spurious Emissions up to 18GHz

[1] Uncertainty in test result = 4.75 dB

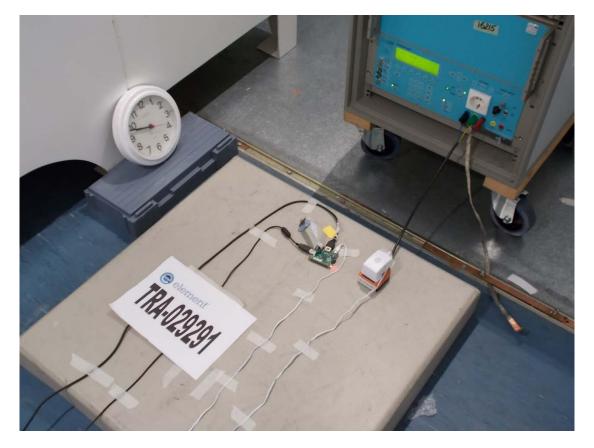

Cable Calibrations

[1] Cable calibration up to 18 GHz = 0.4 dB

RF682 3.0 43 of 50


24 APPENDIX A – PHOTOGRAPHS

Electrostatic Discharge Immunity


RF682 3.0 44 of 50

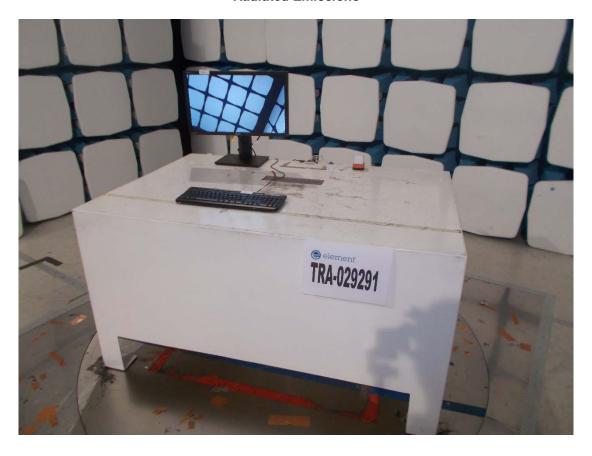
Radiated Immunity

RF682 3.0 45 of 50

Electrical Fast Transient Immunity

RF682 3.0 46 of 50

Voltage Surge Immunity


RF682 3.0 47 of 50

Conducted Radio Frequency Immunity

RF682 3.0 48 of 50

Radiated Emissions

RF682 3.0 49 of 50

Conducted Emissions

RF682 3.0 50 of 50