Raspberry Pi | GPIO Usage on Raspberry Pi Devices White Paper

&

GPIO Usage on Raspberry
Pi Devices

Raspberry Pi Ltd

GPIO Usage on Raspberry Pi Devices

Colophon

© 2022-2025 Raspberry Pi Ltd

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).

Release 1
Build date 13/08/2025
Build version | 0e6d3b8eb200

Legal disclaimer notice

TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO
TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL") “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPL BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the RESOURCES or
any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for their
selection and use of the RESOURCES and any application of the products described in them. User agrees to indemnify and hold
RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of the
RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous environments
requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air
traffic control, weapons systems or safety-critical applications (including life support systems and other medical devices), in which
the failure of the products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk
Activities”). RPL specifically disclaims any express or implied warranty of fitness for High Risk Activities and accepts no liability
for use or inclusions of Raspberry Pi products in High Risk Activities.

Raspberry Pi products are provided subject to RPL's Standard Terms. RPLs provision of the RESOURCES does not expand or
otherwise modify RPLs Standard Terms including but not limited to the disclaimers and warranties expressed in them.

Colophon 2

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

GPIO Usage on Raspberry Pi Devices

Document version history

Release | Date Description
1 1 Aug 2024 | Initial release
2 13 Aug 2025 | Update to Wiring Pi section

Scope of document

This document applies to the following Raspberry Pi products:

Pi0 Pi1 Pi2 Pi3 | Pi4 | Pi | Pi5| Pi | CM1 | CM3 | CM4 | CM5 | Pico |Pico2
400 500
0 W H A B A B B All All All All All All All All All All
v v v v v v v v v v v v v v

Colophon

GPIO Usage on Raspberry Pi Devices

Introduction

Ever since the very first Raspberry Pi SBC launched in 2012, they have sported a header on which there are several General Purpose
Input/Output (henceforth GPIO) pins. The earliest models had a 26-pin header, but on Raspberry Pi 1 Model B+ this was extended
to 40 pins and has remained the same since. As the 26-pin header devices are no longer manufactured, this document will only
refer to the 40-pin header devices.

Over the last decade, there have been varied options available to drive these GPIO pins, and this document will attempt to explain
some of the various libraries that have been and gone, and what is now the recommended way of driving GPIO pins from Linux
(using either C/C++ or Python). GPIOs are also available for the many other languages that can be used across the range of
Raspberry Pi SBCs, but this document will concentrate on these two languages.

The Raspberry Pi online documentation has a lot of information on GPIOs and should be read in conjunction with this document.
See https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#gpio

This document does not attempt to provide information on using the libraries, but is intended solely to help choose an appropriate
library matched to the user’s requirements.

Introduction 2

https://www.raspberrypi.com/documentation/computers/raspberry-pi.html#gpio

GPIO Usage on Raspberry Pi Devices

What is a GPIO?

A GPIO is a way of connecting your Raspberry Pi device to the outside world. In its simplest form, a GPIO could be used to drive
an LED (an output) or to connect a switch (an input).

Raspberry Pi GPIOs work at 3.3V, so when configured as an output they will be set to 3.3V when on, or when set as an input must
be connected to a maximum of 3.3V.

Rather than just being On/Off pins, Raspberry Pi GPIOs can also be assigned to more sophisticated hardware peripherals, provided
either in the SoC or, in the case of Raspberry Pi 5, in the RP1 chip. These peripherals include 12C, SPI, DPI, PWM, and serial ports.
This document will not go into the details of these peripherals, but there is lots of information on the Raspberry Pi website. When
a hardware peripheral is mapped to a GPIO, this is known as an ‘alternate function’, as the GPIO is now being used for something
else. Please refer to the datasheet of the device being used for a list of all alternate functions available, and to which GPIO pins
they can be assigned: https://datasheets.raspberrypi.com/

Itis strongly recommended that rather than accessing these alternative function devices directly, the appropriate Linux subsystem
is used for access. For example, there are specific subsystems for 12C, SPI, DPI, PWM, and serial ports (UARTs) that provide
standard Linux APIs, and these should be used to provide the greatest forward and multi-platform compatibility.

Representation in Linux

The Linux kernel documentation has a good description of the internal representation of GPIOs here: https://docs.kernel.org/
driver-api/gpio/driver.html

The following definitions are extracted from that document.

GPIO
General Purpose Input Output
GPIO Line
A single GPIO on one pin.
GPIO chip
A GPIO chip handles one or more GPIO lines. There can be multiple gpiochips in a system, usually mapping to distinct GPIO
hardware blocks.
GPIO Offset
Individual lines in a GPIO driver are referred to by an offset , a unique number between 0 and n-1, where ‘n’ is the number

of GPI0s handled by the GPIO chip. The offset is an internal representation only, and is not the same as the GPIO number
presented to the user.

GPIO on Raspberry Pi SBCs

What is a GP10? 3

https://datasheets.raspberrypi.com/
https://docs.kernel.org/driver-api/gpio/driver.html
https://docs.kernel.org/driver-api/gpio/driver.html

GPIO Usage on Raspberry Pi Devices

Figure 1.
GPIO Pinout diagram
e N
3V3 power 5V power
GPIO 2 (SDA) 5V power
GPIO 3 (SCL) Ground
GPIO 4 (GPCLKO) GPIO 14 (TXD)
Ground GPIO 15 (RXD)
GPIO17 GPIO 18 (PCM_CLK)
GPIO 27 Ground
GPIO 22 GPIO 23
3V3 power GPIO 24
GPIO 10 (MOSI) Ground
GPIO 9 (MISO) GPIO 25
GPIO 11 (SCLK) GPIO 8 (CEO)
Ground GPIO 7 (CET)
GPIO 0 (ID_SD) GPIO 1 (ID_SC)
GPIO 5 Ground
GPIO 6 GPIO 12 (PWMO)
GPIO 13 (PWM1) Ground
GPIO 19 (PCM_FS) GPIO 16
GPIO 26 GPIO 20 (PCM_DIN)
Ground GPIO 21 (PCM_DOUT)
- J

On Raspberry Pi 0-2, all of the GPIO pins are directly driven from the SoC itself, meaning there is a direct connection from the SoC
to the physical pins on the boards. From Raspberry Pi 3 onwards, there were not enough GPIOs available on the SoC to drive all
the peripherals and still have the same GPIO pinouts as previous models, so a GPIO extender chip attached via 12C is used. This
results in two gpiochips being instantiated in Linux, one for the SoC-provided GPIO lines and one for the GPIO extender lines.

On Raspberry Pi 5, things are a little more complicated. The SoC itself (The BCM2712) has four distinct GPIO hardware blocks
(providing always-on and other features), and the RP1 provides the user-facing GPIO lines. This results in five gpiochips being
instantiated.

Using gpiodetect (see later), we get the following results for various Pi models:

Raspberry Pi 4 example

pi@pi4:~ $ gpiodetect
gpiochip® [pinctrl-bcm2711] (58 lines)
gpiochip1 [raspberrypi-exp-gpio] (8 lines)

Raspberry Pi 5 example

pi@pi5:~ $ gpiodetect

gpiochip® [gpio-brcmstb@107d508500] (32 lines)
gpiochip1 [gpio-brcmstb@107d568520] (4 lines)
gpiochip2 [gpio-brcmstb@107d517c80] (17 lines)
gpiochip3 [gpio-brcmstb@107d517c20] (6 lines)
gpiochip4 [pinctrl-rp1] (54 lines)

Careful examination of the above outputs will show that the user-facing GPIOs, those with pinctrl in their description, actually
appear on a different gpiochip : 0 on models prior to Raspberry Pi 5, and 4 on Raspberry Pi 5. This is a problem for GPIO libraries
that are intended to run over the entire model range, as they need to determine the model of Pi being used, then decide which
gpiochip to access.

To counter this problem, as of July 2024, a modification has been made to the Linux kernel and the device tree system on
Raspberry Pi 5 to reorder the gpiochips to match those of earlier models (see https://github.com/raspberrypi/linux/pull/6144#
issuecomment-2234013076) As a result, gpiodetect will return the following on Raspberry Pi 5.

pi@pi5:~ $ gpiodetect

gpiochip® [pinctrl-rp1] (54 lines)

gpiochip10 [gpio-brcmstb@107d508500] (32 lines)
gpiochip11 [gpio-brcmstb@187d5085208] (4 lines)

What is a GP10? 4

https://github.com/raspberrypi/linux/pull/6144#issuecomment-2234013076)
https://github.com/raspberrypi/linux/pull/6144#issuecomment-2234013076)

GPIO Usage on Raspberry Pi Devices

gpiochip12 [gpio-brcmstb@187d517¢c08] (17 lines)
gpiochip13 [gpio-brcmstb@187d517¢208] (6 lines)

The user-facing GPIOs are now to be found on gpiochipe , as with earlier models. Internal system GPIOs have been reallocated to
10 and above to show that they are system-level devices.

What is a GP10? 5

GPIO Usage on Raspberry Pi Devices

A history of GPIO libraries

When Raspberry Pi first launched, there were no specific software libraries to drive the GPIOs provided by Raspberry Pi, so third
parties stepped into the gap. There are many different libraries out there, but this document will concentrate on the more popular
ones. Over the years, not only have the libraries evolved, but so have the Linux subsystems used for GPIO. A major change is the
deprecation of the sysfs access to GPIO, which is due to be removed completely from the Linux kernel. Since some libraries used
this interface, they are no longer usable.

Some libraries use direct access to registers. Whilst this is the fastest way of accessing GPIO information, the register’s location
(and sometimes content) varies from device to device. In addition, Raspberry Pi 5 and its use of the RP1 to provide its I/0, including
GPIO, means these direct access approaches no longer work. The appropriate method to access GPIO features is now via the
standard Linux libgpiod library, which will be discussed more fully later. Using a hardware abstraction like this means the Linux
kernel handles any differences in hardware that may be encountered between different models, and also products from different
manufacturers, leaving the user space libraries to provide features without having to worry about the underlying implementation
of the GPIOs.

Wiring Pi

https://github.com/WiringPi/WiringPi

A library written in C, first developed in around 2013 and one of the first available. The original developer found he did not have
the time to develop the library further, so maintenance of the library is now led by the Grazer Computer Club (https://github.
com/GrazerComputerClub)

Wiring Pi has now been updated to work with the Raspberry Pi 5, and is actively maintained.

© noTE

| On the Raspberry Pi 5, the cLk functionality is currently not supported.

There are several language wrappers available for Wiring Pi. These are linked from the Wiring Pi GitHub page.

pigpio
https://github.com/joan2937/pigpio

Another C library that uses DMA to provide high performance. Other language wrappers are available. pigpio is heavily tailored
to the Broadcom SoCs used on Raspberry Pi devices, to the extent that it does not work on any other SoCs. This means that it
can fully exploit the hardware capabilities of the Broadcom devices, and so very high sampling rates are available (e.g. 1 million
samples per second on GPI0O0-27, including timestamping). This makes ‘pigpio’ very useful for programs such as piscope , a
software oscilloscope.

However, due to the underlying hardware changes on Raspberry Pi 5, pigpio does not yet work on this device. For this reason, it
is not yet recommended for new projects.

pigpiod

A daemon/resident version of pigpio which accepts commands from pipe and socket interfaces.

Igpio

By the same author as pigpio , 1gpio is a more general-purpose library than ‘pigpio’, and will run on other SBCs and Linux devices.
It uses the /dev/gpiochip device kernel interface rather than accessing registers directly. The library is written in C, but there is
also a Python library and a version that provides remote control of GPIOs using the rpgiod daemon in both C and Python.

Whilst not as performant as pigpio , it should run on all models of Raspberry Pi devices.

A history of GPIO libraries 6

https://github.com/WiringPi/WiringPi
https://github.com/GrazerComputerClub)
https://github.com/GrazerComputerClub)
https://github.com/joan2937/pigpio

GPIO Usage on Raspberry Pi Devices

RPi.GPIO

https://pypi.org/project/RPi.GPIO/

A Python module to control the GPIO on a Raspberry Pi. Because Python uses garbage collection, this can affect timings, so this
library is not recommended for real-time or time-critical applications. It does not support SPI, I2C, Hardware PWM, or serial ports.

This library uses direct hardware access under the hood, so it does not support Raspberry Pi 5. However, there is a new library
with the same API that uses libgpiod for the backend, called rpi-1gpio , which should be functional on Raspberry Pi 5: https://
rpi-lgpio.readthedocs.io/en/release-0.4/

There is a useful article on the reasoning behind the development of rpi-1gpio here: https://waldorf.waveform.org.uk/2022/the-
one-where-dave-breaks-stuff.html

A history of GPIO libraries 7

https://pypi.org/project/RPi.GPIO/
https://rpi-lgpio.readthedocs.io/en/release-0.4/
https://rpi-lgpio.readthedocs.io/en/release-0.4/
https://waldorf.waveform.org.uk/2022/the-one-where-dave-breaks-stuff.html
https://waldorf.waveform.org.uk/2022/the-one-where-dave-breaks-stuff.html

GPIO Usage on Raspberry Pi Devices

Current libraries

libgpiod

https://libgpiod.readthedocs.io/en/latest/index.html https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

libgpiod is a C library and set of tools for interacting with the Linux GPIO character devices (/dev/gpiochipX). Note that gpiod
stands for GPIO device, not daemon. There are two versions of libgpiod , version 1 and version 2. At present, Raspberry Pi OS
includes the version 1 library, so you should take that into account when using the various tools as their behaviour does change
between versions.

By default, 1ibgpiod follows the Linux ethos of taking control of a peripheral, allowing the peripheral to be used, and, when the
process ends, returning the peripheral to its previous state. This means that there is no guarantee that when a program to set a
GPIO to a particular value exits, the value will remain as set. It may or may not be returned to the state from before the set program
was run. In order to make the move from the persistent operations of the previous sysfs to libgpiod easier, the Raspberry Pi
kernel modifies this behaviour so that the state of a GPIO IS retained when a program that has changed the value (e.g. gpioset ,
see below) exits.

You can enable the automatic reversion behaviour of 1ibgpiod by adding the following to the config.txt file.
dtparam=strict_gpiod

Alternatively, add the following to the kernel command line (cmdline.txt).
pinctrl_bcm2835.persist_gpio_outputs=n

One related feature of 1ibgpiod is that it guarantees exclusivity whilst the GPIO is claimed, which none of the other libraries do.
That means if you open a GPIO line via libgpiod , no other applications will be able to access it until you release it.

Tools

libgpiod includes several tools that are available in Raspberry Pi OS. Please see the man pages for the commands for more
details. Note that the behaviour and parameters for the commands do vary between v1 and v2 of libgpiod .

gpiodetect
List all GPIO devices (gpiochips) in the system. Displays their names, labels, and number of GPIO lines supported.

gpioinfo
List all the GPIO lines, their gpiochip , offset, name, and direction. Any lines in use will also display the consumer name and
configured attributes, for example the active state, bias, drive, edge detection, and debounce period.

gpioget
Read values of specified GPIO lines.

gpioset
Set the value of specified GPIO lines. By default, gpioset in libgpiod v1 will exit immediately, which may not be useful. Use
--mode=wait onthe command line to force it to wait until ctri-c is pressed. The default behaviour for gpioset in libgpiod v2
is NOT to exit, which will maintain the GPIO line at the requested value.

gpiomon
Wait for edge events on GPIO lines. Specify which edges to watch for, how many events to process before exiting, or if the
events should be reported to the console.

gpionotify
Wait for changes to the info for GPIO lines. Specify which changes to watch for, how many events to process before exiting,
or if the events should be reported to the console.

gpiofind
Determine the location of the specific named GPIO (gpiochip and offset). Use the results as input to the set/get operations.

Current libraries 8

https://libgpiod.readthedocs.io/en/latest/index.html
https://git.kernel.org/pub/scm/libs/libgpiod/libgpiod.git/

GPIO Usage on Raspberry Pi Devices

Examples

Display all the GPIO chips on a Raspberry Pi 5.

pi@pi5:~ $ gpiodetect

gpiochip® [pinctrl-rp1] (54 lines)

gpiochip1@ [gpio-brcmstb@107d508500] (32 lines)
gpiochip11 [gpio-brcmstb@187d5085208] (4 lines)
gpiochip12 [gpio-brcmstb@187d517¢c08] (17 lines)
gpiochip13 [gpio-brcmstb@187d517¢c208] (6 lines)

pi@pi4:~ $ gpiofind RGMII_MDIO
gpiochip@ 28

Set GPI03 high for three seconds, then return to default.

pi@pi4:~ $ gpioset --mode time --sec 3 gpiochip@ 3=1
gpiochip@ 28

gpiozero

https://gpiozero.readthedocs.io/en/stable/
gpiozero is a Python library providing a simple-to-use interface to Raspberry Pi GPIOs.

The library includes interfaces to many simple everyday components, as well as complex devices like sensors, analog-to-digital
converters, full-colour LEDs, robotics kits, and more.

The underlying access to the hardware GPIO lines is viaa pin factory ,and this can be set to whatever underlying system is needed.
At the time of writing, libgpiod is not yet available as a pin factory, so 1gpio is suggested as an alternative. More information on
pin factories can be found here: https://gpiozero.readthedocs.io/en/stable/api_pins.html#module-gpiozero.pins

To use 1gpio as the underlying pin control, you can either set an environment variable before running Python (on the command
line, exported, or in a login script), or select it in the Python code.

pi@raspberrypi:~ $§ GPIOZERO_PIN_FACTORY=1gpio python3

from gpiozero.pins.lgpio import LGPIOFactory
from gpiozero import Device, LED

Device.pin.factory = LGPIOFactory(chip=0)

led = LED(12)

The chip parameter to the factory constructor specifies which gpiochip device to open. It defaults to 0, but be careful on Raspberry
Pi 5 to get the right device. See the ‘GPIO on Raspberry Pi SBCs' section for details.

pinctrl

pinctrl is a more powerful replacement for the older raspi-gpio , a tool for displaying and modifying the GPIO and pin muxing
state of a system. It is not a library but a single application that can be used to manipulate GPIO states.

It accesses the hardware directly, bypassing the kernel drivers, and as such requires root privilege (run with ‘sudo’). This application
is the only officially supported mechanism for baremetal access to the GPIOs, and it works on all models of Raspberry Pi SBC. It
is designed as a debugging tool for working with GPIOs during product development, rather than for use in production software.

The source for pinctrl can be found here: https://github.com/raspberrypi/utils/tree/master/pinctrl

Current libraries 9

https://gpiozero.readthedocs.io/en/stable/
https://gpiozero.readthedocs.io/en/stable/api_pins.html#module-gpiozero.pins
https://github.com/raspberrypi/utils/tree/master/pinctrl

GPIO Usage on Raspberry Pi Devices

Examples

Display all the GPIO chips on a Raspberry Pi 5.

pi@pi5:~ $§ pinctrl get 26-42

Current libraries

10

GPIO Usage on Raspberry Pi Devices

Conclusions

Raspberry Pi Ltd make considerable effort to maintain backward compatibility over much of their software stack, however GPIO
has always been problematic due to the plethora of third-party libraries, along with the evolution of the underlying Raspberry Pi
hardware and the associated Linux GPIO subsystem.

It is hoped that the most recent move to libgpiod will stabilise the GPIO environment, meaning better compatibility for future
products, and less or no work needed when porting software to them.

Contact Details for more information

Please contact applications@raspberrypi.com if you have any queries about this whitepaper.

Web: www.raspberrypi.com

Conclusions 11

applications@raspberrypi.com
www.raspberrypi.com

% Raspberry Pi

Raspberry Pi is a trademark of Raspberry Pi Ltd

Raspberry Pi Ltd

	Introduction
	What is a GPIO?
	Representation in Linux
	GPIO on Raspberry Pi SBCs

	A history of GPIO libraries
	Wiring Pi
	pigpio
	pigpiod
	lgpio

	RPi.GPIO

	Current libraries
	libgpiod
	Tools
	Examples

	gpiozero
	pinctrl
	Examples

	Conclusions
	Contact Details for more information

