
Raspberry Pi | Using OTG mode on Raspberry Pi SBCs White Paper

Using OTG mode on
Raspberry Pi SBCs

Raspberry Pi Ltd

Using OTG mode on Raspberry Pi SBCs

Colophon

© 2022-2025 Raspberry Pi Ltd

This documentation is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND).

Release 1

Build date 01/10/2025

Build version 99a8b0292e31

Legal disclaimer notice
TECHNICAL AND RELIABILITY DATA FOR RASPBERRY PI PRODUCTS (INCLUDING DATASHEETS) AS MODIFIED FROM TIME TO
TIME (“RESOURCES”) ARE PROVIDED BY RASPBERRY PI LTD (“RPL”) “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW IN NO EVENT SHALL RPL BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE RESOURCES, EVEN IF ADVISED OF THE POSSI-
BILITY OF SUCH DAMAGE.

RPL reserves the right to make any enhancements, improvements, corrections or any other modifications to the RESOURCES or
any products described in them at any time and without further notice.

The RESOURCES are intended for skilled users with suitable levels of design knowledge. Users are solely responsible for their
selection and use of the RESOURCES and any application of the products described in them. User agrees to indemnify and hold
RPL harmless against all liabilities, costs, damages or other losses arising out of their use of the RESOURCES.

RPL grants users permission to use the RESOURCES solely in conjunction with the Raspberry Pi products. All other use of the
RESOURCES is prohibited. No licence is granted to any other RPL or other third party intellectual property right.

HIGH RISK ACTIVITIES. Raspberry Pi products are not designed, manufactured or intended for use in hazardous environments
requiring fail safe performance, such as in the operation of nuclear facilities, aircraft navigation or communication systems, air
traffic control, weapons systems or safety-critical applications (including life support systems and other medical devices), in which
the failure of the products could lead directly to death, personal injury or severe physical or environmental damage (“High Risk
Activities”). RPL specifically disclaims any express or implied warranty of fitness for High Risk Activities and accepts no liability
for use or inclusions of Raspberry Pi products in High Risk Activities.

Raspberry Pi products are provided subject to RPL’s Standard Terms. RPL’s provision of the RESOURCES does not expand or
otherwise modify RPL’s Standard Terms including but not limited to the disclaimers and warranties expressed in them.

Colophon 2

https://creativecommons.org/licenses/by-nd/4.0/
https://www.raspberrypi.com/terms-conditions-sale/
https://www.raspberrypi.com/terms-conditions-sale/

Using OTG mode on Raspberry Pi SBCs

Document version history

Release Date Description

1 1 Oct 2025 Initial release

Document version history 3

Using OTG mode on Raspberry Pi SBCs

Scope of document

This document applies to the following Raspberry Pi products:

Single Board Computers / SBCs

Pi Zero Pi Zero 2 Pi 1 Pi 2 Pi 3 Pi 4 Pi 5

- W H W H A B A B B - -

Compute Modules

CM1 CM3 CM4 CM5

Scope of document 1

Using OTG mode on Raspberry Pi SBCs

Introduction

USB On-The-Go (OTG) is a specification that allows a device to function either as a USB host (like a PC) or as a USB device/
peripheral (like a keyboard, an Ethernet adapter, or a mass storage device). The ‘USB On-The-Go’ Wikipedia page provides a lot of
detail on the OTG specification: https://en.wikipedia.org/wiki/USB_On-The-Go.

Usually, a USB connection involves a fixed host (e.g. a computer) and a peripheral (e.g. a mouse). USB OTG allows a device to
switch between the two. For example, a Raspberry Pi could act as a host when reading files from a flash drive, or function as a
flash drive itself when connected to a computer.

The Raspberry Pi family includes several boards that can function in OTG/peripheral mode, but support differs depending on the
model and the system on chip (SoC). When acting in this peripheral mode, the device is often referred to as a ‘gadget’.

This whitepaper walks through the Raspberry Pi SBC lineup, explains their OTG capabilities, and provides configuration/code
examples. It covers two distinct OTG mechanisms: the legacy method, which is still very popular and is described first, followed
by the currently recommended scheme, ConfigFS .

Introduction 2

https://en.wikipedia.org/wiki/USB_On-The-Go

Using OTG mode on Raspberry Pi SBCs

Legacy OTG

Raspberry Pi Zero / Zero W / Zero 2 W
These boards are the most OTG-friendly in the Raspberry Pi family.

They expose the SoC’s USB controller directly on the USB data port (the one labelled USB , not PWR IN), and the onboard software
can be configured to make your Raspberry Pi act as an OTG device.

Enabling OTG mode

Tip

Because you are using the only USB port on Raspberry Pi Zero for OTG purposes, you will not be able to plug in a keyboard
or a mouse. You can instead use a Wi-Fi connection and SSH to communicate with Raspberry Pi Zero. Enable Wi-Fi, then
log in to your local network, and from a different device (e.g. another Raspberry Pi, a Linux machine, or a Windows PC), use
SSH to log in to Raspberry Pi Zero. Alternatively, you could use Pi-Connect instead of SSH. (https://www.raspberrypi.com/
software/connect/

First, we need to tell the USB system to use the DWC2 driver, which will enable OTG mode. Edit /boot/firmware/config.txt and
add the following:

Code

dtoverlay=dwc2

Now we need to configure the software to connect the requested OTG driver to the USB system; in this case, we want our Raspberry
Pi Zero to appear as an Ethernet device. Edit /boot/firmware/cmdline.txt and add modules-load=dwc2,g_ether after rootwait ,
like so:

Code

console=serial0,115200 console=tty1 root=PARTUUID=xxxxxxxx-02 rootfstype=ext4 fsck.repair=yes rootwait modules-
load=dwc2,g_ether

By putting this on the kernel command line, the module will be loaded during kernel boot. See the next section on how to load the
module from the terminal.

Reboot, and your Raspberry Pi Zero will appear as a USB Ethernet gadget when plugged into a PC.

Other gadget modules
Instead of g_ether , you can try:

g_serial
Appears as a USB serial device

g_mass_storage
Exposes an image file as a flash drive

g_composite
Emulates a composite device

This is not an exhaustive list of possible OTG gadget modes.

Tip

A USB composite device is a single physical device that functions as multiple independent devices to a computer, appearing
as several separate interfaces or device classes. It combines different functionalities, such as a keyboard and a mouse, or a
storage drive and a webcam, into a single USB device and connector. When connected, the operating system recognises and
uses separate drivers for each of the device’s distinct functions, allowing them to operate independently.

Legacy OTG 3

https://www.raspberrypi.com/software/connect/
https://www.raspberrypi.com/software/connect/

Using OTG mode on Raspberry Pi SBCs

To create a USB serial gadget, we can load the appropriate module from the command line:

Code

sudo modprobe g_serial

When connected to a Windows PC, the Raspberry Pi will appear as a COM port in the Device Manager; when connected to a Linux
device (e.g. a Raspberry Pi SBC), it will appear as a serial device like /dev/ttyACM0 .

Raspberry Pi 4 and 5 (OTG on the USB-C power port)
Raspberry Pi 4′s USB-C power/OTG port supports peripheral mode when it is not being used to power the board.

Raspberry Pi 5 introduces a PCIe-attached USB controller, which does not support OTG. However, as with Raspberry Pi 4, the native
OTG peripheral function on the SoC is exposed through the power connector.

Steps
Power your Raspberry Pi through the GPIO header (5V and GND), leaving the USB-C free.

Connect the USB-C port to your host computer.

Enable OTG in /boot/firmware/config.txt :

Code

dtoverlay=dwc2,dr_mode=peripheral

Note

You need the dr_mode=peripheral option on the overlay to force the controller into OTG peripheral (rather than host) mode,
as the OTG_ID line that would normally do the selection is not present on Raspberry Pi 4 or 5.)

Load a gadget module (Ethernet):

Code

sudo modprobe g_ether

Your Raspberry Pi will now enumerate as a USB device to the host.

Tip

Not all host systems handle Raspberry Pi 4′s OTG mode reliably. Ethernet and serial work best.

Raspberry Pi Compute Module series
Raspberry Pi Compute Module 1, 3, 3+ and 4 expose the SoC’s USB OTG controller directly to the carrier board, making them highly
flexible.

CM1/CM3/CM3+ The USB OTG interface is available on dedicated pins; carrier boards often expose this via a micro-USB port.

CM4 Offers an OTG-capable USB 2.0 interface (USB_OTG). This is routed to the Compute Module 4 IO Board’s micro-USB
connector.

CM4 OTG example (Ethernet gadget)

Plug a micro-USB cable into the USB port on the IO Board.

In /boot/firmware/config.txt , add:

Code

dtoverlay=dwc2,dr_mode=peripheral

In /boot/cmdline.txt, add:

Legacy OTG 4

Using OTG mode on Raspberry Pi SBCs

Code

modules-load=dwc2,g_ether

Reboot. Compute Module 4 will now appear as a USB Ethernet adapter.

Raspberry Pi A, B, B+, 2B, 3B, 3B+
The USB ports on these models are connected through a hub chip (LAN9512/LAN9514 or VIA Labs), which strips away OTG
capabilities. They can only operate as USB hosts, so no OTG support is available.

Using the various device types
This section describes how to set up the most common gadget modes.

Mass storage devices
In order to use a Raspberry Pi as a mass storage device (like a USB stick), you will need to create a backing file to hold the
stored data:

Code

Example: Make a 256 MB file to act as "USB stick"
sudo dd if=/dev/zero of=drive.bin bs=1M count=256
Create a VFAT file system on the backing store
sudo mkfs.vfat drive.bin

Edit /etc/modprobe.d/g_mass_storage.conf to tell the system to use the backing store:

Code

options g_mass_storage file=/drive.bin stall=0 removable=1

You can examine the contents of the backing store by mounting it on your Raspberry Pi. Here we mount it in a folder called
mountpoint :

Code

sudo mkdir mountpoint
sudo mount -o loop drive.bin mountpoint

You’ll need to adjust the paths as appropriate.

Ethernet devices
When the g_ether device is plugged into a Linux host, it will usually appear as a network interface named usb0 (when using
ifconfig).

You can (usually) connect to the device using SSH, as follows:

Code

ssh pi@raspberrypi.local

Serial devices
When a Raspberry Pi is set up as a g_serial device, a new serial device will appear (when using Raspberry Pi OS Bookworm with a
6.12.34 kernel, this was /dev/ttyGS0). When that Raspberry Pi device is then plugged into a (for example, Linux) host, the device
will be recognised as a CDC ACM–compliant device and will appear as another serial port. For example, on a Raspberry Pi 500
running Bookworm, it appears as /dev/ttyACM0 .

Under Linux, you can test the serial link by using screen on each device. If using Windows on the host, something like Putty should
work well.

Legacy OTG 5

Using OTG mode on Raspberry Pi SBCs

On your Raspberry Pi:

Code

screen /dev/ttyGS0

On a Linux host:

Code

screen /dev/ttyACM0

Then type something into each window — the output should appear on the other screen instead.

Note

If screen is not installed, use sudo apt install screen in a terminal window.

It’s easy to see how this functionality could be used to provide a serial interface to a Raspberry Pi device that monitors a number
of sensors (e.g. via I2C or SPI) and passes the collated information back, via the serial port, to the host computer.

Legacy OTG 6

Using OTG mode on Raspberry Pi SBCs

ConfigFS/usb_gadget: a brave new world

Although they are by far the most common way to set up OTG on Raspberry Pi devices, the mechanisms described above have
actually been superseded by something called usb_gadget , which is part of ConfigFS.

ConfigFS is a Linux kernel interface (a virtual file system mounted at /sys/kernel/config) used to configure kernel objects —
including USB gadget drivers — in a modular way. Using ConfigFS / usb_gadget is more flexible than the old g_mass_storage /
g_ether method, because you can compose multiple USB functions (e.g. Ethernet + serial + mass storage) at once.

However, this extra functionality does come with a higher setup cost.

The basic idea is that a set of virtual folders and files is created under the /sys/kernel/config folder, which defines the gadget
required.

Some kernel documentation on usb_gadgets is available here: https://docs.kernel.org/driver-api/usb/gadget.html and https://
www.kernel.org/doc/Documentation/ABI/testing/configfs-usb-gadget.

Setup
Setting up the DWC USB peripheral is the same as in legacy mode. Edit config.txt as sudo and add:

Code

dtoverlay=dwc

Now add the required module for loading on startup. Edit /etc/modules as sudo and add the following to the end of the file:

Code

dwc2

On Raspberry Pi OS, ConfigFS is already mounted at /sys/kernel/config , but if your OS does not have this by default, do the
following:

Code

sudo mount -t configfs none /sys/kernel/config

You’ll need to edit fstab if you want this mount to happen automatically at startup.

Now we need to configure our USB gadget by loading the libcomposite module — the kernel library that ConfigFS uses to create
USB gadgets — as follows:

Code

sudo modprobe libcomposite

We can check that it has loaded properly by looking at the contents of /sys/kernel/config , which should now contain a folder
called usb_gadget .

The creation of the actual USB gadget is next, which involves making a folder with the name of the gadget and then creating a set
of entries within that folder to define the gadget’s properties. This bash script excerpt does most of the required setup:

Code

cd /sys/kernel/config/usb_gadget
sudo mkdir MyGadget
cd MyGadget
echo 0x1d6b > idVendor # Linux Foundation’s USB VID
echo 0x0104 > idProduct # Multifunction Composite Gadget
echo 0x0100 > bcdDevice # v1.0.0
echo 0x0200 > bcdUSB # USB2
mkdir strings/0x409 # 0x409 = English
Insert your own manufacturer and gadget name here
echo "RaspberryPi" > strings/0x409/manufacturer
echo "MyPiGadget" > strings/0x409/product
Make the serial number the same as the Raspberry Pi serial number

ConfigFS/usb_gadget: a brave new world 7

https://docs.kernel.org/driver-api/usb/gadget.html
https://www.kernel.org/doc/Documentation/ABI/testing/configfs-usb-gadget
https://www.kernel.org/doc/Documentation/ABI/testing/configfs-usb-gadget

Using OTG mode on Raspberry Pi SBCs

SERIAL=`cat /proc/cpuinfo | awk '/Serial/ {print $3}' `
echo $SERIAL > strings/0x409/serialnumber
mkdir configs/c.1
echo 120 > configs/c.1/MaxPower
mkdir configs/c.1/strings/0x409
echo "Config 1" > configs/c.1/strings/0x409/configuration

Now that the basic device data has been set up, we need to tell the device exactly what it is. Creating each device is as simple as
creating a folder in the ConfigFS gadget’s functions folder and then linking that folder to the configuration entry within the same
gadget.

Serial (CDC ACM):

Code

mkdir functions/acm.usb0
ln -s functions/acm.usb0 configs/c.1/

Ethernet (RNDIS and ECM):

Code

mkdir functions/ecm.usb0
ln -s functions/ecm.usb0 configs/c.1/

Mass storage:

As with the legacy setup, we need a backing store for our mass storage gadget:

Code

cd ~
Example: Make a 256 MB file to act as "USB stick"
sudo dd if=/dev/zero of=drive.bin bs=1M count=256
Create a VFAT file system on the backing store
sudo mkfs.vfat drive.bin

And to use that:

Code

mkdir functions/mass_storage.usb0
echo "/home/pi/drive.bin" > functions/mass_storage.usb0/lun.0/file
ln -s functions/mass_storage.0 configs/c.1/

Tip

You can have more than one backing store — just assign each backing store to lun.0, lun.1, lun.2, and so on.

Finally, we need to link the gadget to the USB device controller (UDC).

Code

UDC=`ls /sys/class/udc`
echo $UDC > UDC

Tip

/sys/class/udc is a directory within the sysfs file system that represents the available USB device controllers (UDCs). It
allows the kernel’s USB gadget subsystem to identify and interact with hardware UDCs on a device, enabling the system
to function as a USB peripheral. You can list its contents using ls /sys/class/udc/ to find the name of the UDC, such as
3f980000.usb , and then write that name to a gadget’s configuration to bind the gadget to the UDC.

Once the setup is complete, the folder structure and contents should resemble the example below, which sets up both a serial
gadget and an Ethernet gadget on the same device:

ConfigFS/usb_gadget: a brave new world 8

Using OTG mode on Raspberry Pi SBCs

Code

/sys/kernel/config/usb_gadget/MyGadget/
├── configs/
│ └── c.1/
│ ├── acm.usb0 -> ../../functions/acm.usb0
│ └── ecm.usb0 -> ../../functions/ecm.usb0
├── functions/
│ ├── acm.usb0/
│ └── ecm.usb0/
├── strings/
│ └── 0x409/
│ ├── manufacturer: "RaspberryPi"
│ ├── product: "MyPiGadget"
│ └── serialnumber: "12345678"
├── idVendor: 0x1d6b
├── idProduct: 0x0104
└── UDC: "3f980000.usb"

Now reboot, then connect the Raspberry Pi device to a host device (e.g. another Raspberry Pi, a Windows PC, or a Linux PC). The
host should have a USB Ethernet device and a serial device attached.

Making it all work
All the commands described above need to be run every time the Raspberry Pi device starts up. Since Raspberry Pi OS uses
systemd , that is the appropriate way to run the startup script that does all the setting up. Here is an example script that collates
all the instructions from above:

Code

Load the gadget module
sudo modprobe libcomposite
cd /sys/kernel/config/usb_gadget

Create our new gadget
sudo mkdir MyGadget
cd MyGadget

Add some boilerplate data that the gadget needs
echo 0x1d6b > idVendor # Linux Foundation’s USB VID. Replace with your own VID if required
echo 0x0104 > idProduct # Multifunction Composite Gadget
echo 0x0100 > bcdDevice # v1.0.0
echo 0x0200 > bcdUSB # USB2
mkdir strings/0x409 # 0x409 = English

Insert your own manufacturer and gadget name here
echo "RaspberryPi" > strings/0x409/manufacturer
echo "MyPiGadget" > strings/0x409/product

Make the serial number the same as the Raspberry Pi serial number; you can use whatever is required here
SERIAL=`cat /proc/cpuinfo | awk '/Serial/ {print $3}' `
echo $SERIAL > strings/0x409/serialnumber

Create a configuration area and populate
mkdir configs/c.1
echo 120 > configs/c.1/MaxPower

mkdir configs/c.1/strings/0x409
echo "Config 1" > configs/c.1/strings/0x409/configuration

Create our specific gadget type — this example is a mass storage device, but you can make various different
types
mkdir functions/mass_storage.usb0

Set up our backing store
echo "/home/pi/drive.bin" > functions/mass_storage.usb0/lun.0/file
+
Link our function to our configuration
ln -s functions/mass_storage.0 configs/c.1/

This script will need to be marked as executable:

ConfigFS/usb_gadget: a brave new world 9

Using OTG mode on Raspberry Pi SBCs

Code

chmod +x <script name>

We now need to tell systemd to run our script on startup.

Create a file in /lib/systemd/system — the name you choose is up to you (as long as the suffix is .service), but for this example,
we will use mass-storage-device.service . Enter the following into the file (note that there are many different options for these
service files; we’ve just used the ones we need):

Code

[Unit]
Description=Mass Storage Device
After=systemd-user-sessions.service

[Service]
ExecStart=/home/pi/gadget.sh

[Install]
WantedBy=multi-user.target

You will need to change the ExecStart line to point to wherever you have saved the setup script.

You then need to tell systemd to run the service on startup:

Code

sudo systemctl enable mass-storage-device.service

Now when you plug your Raspberry Pi into a host, it should appear as a mass storage device.

You can disable the systemd service as follows:

Code

sudo systemctl disable mass-storage-device.service

ConfigFS/usb_gadget: a brave new world 10

Using OTG mode on Raspberry Pi SBCs

Attaching a login console to a serial port

If you have set up your Raspberry Pi as a serial gadget, you might want to use that serial gadget to log in to the device, rather than
just using it for point-to-point serial communication. On the latest version of Raspberry Pi OS running systemd this is easy. You
need to tell the system to create a getty on the serial port, and then tell systemd to start it up. The following sets up the getty on
ttyGS0 (The tty created when using ConfigFS to set up a serial device); you may need to adjust this to match whichever tty the
serial device is assigned to.

Code

systemctl enable serial-getty@ttyGS0.service
systemctl start serial-getty@ttyGS0.service

This will start up the getty on the serial port and ensure it starts up automatically on each reboot.

Tip

What is a getty ? In Linux, a getty is a program that manages terminals (both physical serial ports and virtual consoles) to
allow multiple users to log in to a system, handling tasks like initialising the terminal, displaying a login prompt, and invoking
the login program to authenticate the user.

This feature can be particularly useful on something like a Raspberry Pi Zero or Raspberry Pi Zero 2 W. With just one USB connection
providing both power and serial communication, you can plug in the device and log in to it via a terminal.

Attaching a login console to a serial port 11

Using OTG mode on Raspberry Pi SBCs

Conclusion

For true USB gadget projects (e.g. Ethernet, serial, mass storage), the Raspberry Pi Zero family and Raspberry Pi Compute Modules
are the best choice.

Raspberry Pi 4 and Raspberry Pi 5 do offer OTG support, but their power requirements may be an issue.

Raspberry Pi A, B, 2B, 3B and 3B+ boards do not support OTG.

If your project depends heavily on OTG, the best options are Raspberry Pi Zero 2 W or Raspberry Pi Compute Module 4 with the
Compute Module 4 IO Board.

There are two options on the software side: the legacy system is still commonly used and is easy to set up; the ConfigFS system
requires more work to set up but does provide better functionality.

Quick reference table

Model OTG Support Notes

Raspberry Pi Zero / Zero W / Zero 2 W Yes Fully supported on USB data port

Raspberry Pi 4 Yes ¹ USB-C port in device mode

Raspberry Pi 5 Yes ¹ USB-C port in device mode

Raspberry Pi A/B/2B/3B/3B+ No Only host mode

Raspberry Pi Compute Module 1–3 Yes Exposed on OTG pins

Raspberry Pi Compute Module 4 Yes micro-USB on CM4 IO board

¹ Raspberry Pi 4 and 5 will usually draw power from the host via the USB cable, so there may be limitations on available current
due to the higher power requirements of these devices.

Contact Details for more information
Please contact applications@raspberrypi.com if you have any queries about this whitepaper.

Web: www.raspberrypi.com

Conclusion 12

applications@raspberrypi.com
www.raspberrypi.com

Raspberry Pi

Raspberry Pi is a trademark of Raspberry Pi Ltd

Raspberry Pi Ltd

	Introduction
	Legacy OTG
	Raspberry Pi Zero / Zero W / Zero 2 W
	Enabling OTG mode
	Other gadget modules

	Raspberry Pi 4 and 5 (OTG on the USB-C power port)
	Steps
	Raspberry Pi Compute Module series
	CM4 OTG example (Ethernet gadget)

	Raspberry Pi A, B, B+, 2B, 3B, 3B+

	Using the various device types
	Mass storage devices
	Ethernet devices
	Serial devices

	ConfigFS/usb_gadget: a brave new world
	Setup
	Serial (CDC ACM):
	Ethernet (RNDIS and ECM):
	Mass storage:

	Making it all work

	Attaching a login console to a serial port
	Conclusion
	Quick reference table
	Contact Details for more information

